xaizek / zograscope (License: AGPLv3 only) (since 2018-12-07)
Mainly a syntax-aware diff that also provides a number of additional tools.
<root> / third-party / tree-sitter / src / query.c (7878cf557241f8f87d20ff237eec91bd4d4ce950) (128KiB) (mode 100644) [raw]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
#include "tree_sitter/api.h"
#include "./alloc.h"
#include "./array.h"
#include "./language.h"
#include "./point.h"
#include "./tree_cursor.h"
#include "./unicode.h"
#include <wctype.h>

// #define DEBUG_ANALYZE_QUERY
// #define DEBUG_EXECUTE_QUERY

#define MAX_STEP_CAPTURE_COUNT 3
#define MAX_NEGATED_FIELD_COUNT 8
#define MAX_STATE_PREDECESSOR_COUNT 256
#define MAX_ANALYSIS_STATE_DEPTH 8
#define MAX_ANALYSIS_ITERATION_COUNT 256

/*
 * Stream - A sequence of unicode characters derived from a UTF8 string.
 * This struct is used in parsing queries from S-expressions.
 */
typedef struct {
  const char *input;
  const char *start;
  const char *end;
  int32_t next;
  uint8_t next_size;
} Stream;

/*
 * QueryStep - A step in the process of matching a query. Each node within
 * a query S-expression corresponds to one of these steps. An entire pattern
 * is represented as a sequence of these steps. The basic properties of a
 * node are represented by these fields:
 * - `symbol` - The grammar symbol to match. A zero value represents the
 *    wildcard symbol, '_'.
 * - `field` - The field name to match. A zero value means that a field name
 *    was not specified.
 * - `capture_ids` - An array of integers representing the names of captures
 *    associated with this node in the pattern, terminated by a `NONE` value.
 * - `depth` - The depth where this node occurs in the pattern. The root node
 *    of the pattern has depth zero.
 * - `negated_field_list_id` - An id representing a set of fields that must
 *    that must not be present on a node matching this step.
 *
 * Steps have some additional fields in order to handle the `.` (or "anchor") operator,
 * which forbids additional child nodes:
 * - `is_immediate` - Indicates that the node matching this step cannot be preceded
 *   by other sibling nodes that weren't specified in the pattern.
 * - `is_last_child` - Indicates that the node matching this step cannot have any
 *   subsequent named siblings.
 *
 * For simple patterns, steps are matched in sequential order. But in order to
 * handle alternative/repeated/optional sub-patterns, query steps are not always
 * structured as a linear sequence; they sometimes need to split and merge. This
 * is done using the following fields:
 *  - `alternative_index` - The index of a different query step that serves as
 *    an alternative to this step. A `NONE` value represents no alternative.
 *    When a query state reaches a step with an alternative index, the state
 *    is duplicated, with one copy remaining at the original step, and one copy
 *    moving to the alternative step. The alternative may have its own alternative
 *    step, so this splitting is an iterative process.
 * - `is_dead_end` - Indicates that this state cannot be passed directly, and
 *    exists only in order to redirect to an alternative index, with no splitting.
 * - `is_pass_through` - Indicates that state has no matching logic of its own,
 *    and exists only to split a state. One copy of the state advances immediately
 *    to the next step, and one moves to the alternative step.
 * - `alternative_is_immediate` - Indicates that this step's alternative step
 *    should be treated as if `is_immediate` is true.
 *
 * Steps also store some derived state that summarizes how they relate to other
 * steps within the same pattern. This is used to optimize the matching process:
 *  - `contains_captures` - Indicates that this step or one of its child steps
 *     has a non-empty `capture_ids` list.
 *  - `parent_pattern_guaranteed` - Indicates that if this step is reached, then
 *     it and all of its subsequent sibling steps within the same parent pattern
 *     are guaranteed to match.
 *  - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but
 *     for the entire top-level pattern. When iterating through a query's
 *     captures using `ts_query_cursor_next_capture`, this field is used to
 *     detect that a capture can safely be returned from a match that has not
 *     even completed  yet.
 */
typedef struct {
  TSSymbol symbol;
  TSSymbol supertype_symbol;
  TSFieldId field;
  uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
  uint16_t depth;
  uint16_t alternative_index;
  uint16_t negated_field_list_id;
  bool is_named: 1;
  bool is_immediate: 1;
  bool is_last_child: 1;
  bool is_pass_through: 1;
  bool is_dead_end: 1;
  bool alternative_is_immediate: 1;
  bool contains_captures: 1;
  bool root_pattern_guaranteed: 1;
  bool parent_pattern_guaranteed: 1;
} QueryStep;

/*
 * Slice - A slice of an external array. Within a query, capture names,
 * literal string values, and predicate step informations are stored in three
 * contiguous arrays. Individual captures, string values, and predicates are
 * represented as slices of these three arrays.
 */
typedef struct {
  uint32_t offset;
  uint32_t length;
} Slice;

/*
 * SymbolTable - a two-way mapping of strings to ids.
 */
typedef struct {
  Array(char) characters;
  Array(Slice) slices;
} SymbolTable;

/**
 * CaptureQuantififers - a data structure holding the quantifiers of pattern captures.
 */
typedef Array(uint8_t) CaptureQuantifiers;

/*
 * PatternEntry - Information about the starting point for matching a particular
 * pattern. These entries are stored in a 'pattern map' - a sorted array that
 * makes it possible to efficiently lookup patterns based on the symbol for their
 * first step. The entry consists of the following fields:
 * - `pattern_index` - the index of the pattern within the query
 * - `step_index` - the index of the pattern's first step in the shared `steps` array
 * - `is_rooted` - whether or not the pattern has a single root node. This property
 *   affects decisions about whether or not to start the pattern for nodes outside
 *   of a QueryCursor's range restriction.
 */
typedef struct {
  uint16_t step_index;
  uint16_t pattern_index;
  bool is_rooted;
} PatternEntry;

typedef struct {
  Slice steps;
  Slice predicate_steps;
  uint32_t start_byte;
} QueryPattern;

typedef struct {
  uint32_t byte_offset;
  uint16_t step_index;
} StepOffset;

/*
 * QueryState - The state of an in-progress match of a particular pattern
 * in a query. While executing, a `TSQueryCursor` must keep track of a number
 * of possible in-progress matches. Each of those possible matches is
 * represented as one of these states. Fields:
 * - `id` - A numeric id that is exposed to the public API. This allows the
 *    caller to remove a given match, preventing any more of its captures
 *    from being returned.
 * - `start_depth` - The depth in the tree where the first step of the state's
 *    pattern was matched.
 * - `pattern_index` - The pattern that the state is matching.
 * - `consumed_capture_count` - The number of captures from this match that
 *    have already been returned.
 * - `capture_list_id` - A numeric id that can be used to retrieve the state's
 *    list of captures from the `CaptureListPool`.
 * - `seeking_immediate_match` - A flag that indicates that the state's next
 *    step must be matched by the very next sibling. This is used when
 *    processing repetitions.
 * - `has_in_progress_alternatives` - A flag that indicates that there is are
 *    other states that have the same captures as this state, but are at
 *    different steps in their pattern. This means that in order to obey the
 *    'longest-match' rule, this state should not be returned as a match until
 *    it is clear that there can be no other alternative match with more captures.
 */
typedef struct {
  uint32_t id;
  uint32_t capture_list_id;
  uint16_t start_depth;
  uint16_t step_index;
  uint16_t pattern_index;
  uint16_t consumed_capture_count: 12;
  bool seeking_immediate_match: 1;
  bool has_in_progress_alternatives: 1;
  bool dead: 1;
  bool needs_parent: 1;
} QueryState;

typedef Array(TSQueryCapture) CaptureList;

/*
 * CaptureListPool - A collection of *lists* of captures. Each query state needs
 * to maintain its own list of captures. To avoid repeated allocations, this struct
 * maintains a fixed set of capture lists, and keeps track of which ones are
 * currently in use by a query state.
 */
typedef struct {
  Array(CaptureList) list;
  CaptureList empty_list;
  // The maximum number of capture lists that we are allowed to allocate. We
  // never allow `list` to allocate more entries than this, dropping pending
  // matches if needed to stay under the limit.
  uint32_t max_capture_list_count;
  // The number of capture lists allocated in `list` that are not currently in
  // use. We reuse those existing-but-unused capture lists before trying to
  // allocate any new ones. We use an invalid value (UINT32_MAX) for a capture
  // list's length to indicate that it's not in use.
  uint32_t free_capture_list_count;
} CaptureListPool;

/*
 * AnalysisState - The state needed for walking the parse table when analyzing
 * a query pattern, to determine at which steps the pattern might fail to match.
 */
typedef struct {
  TSStateId parse_state;
  TSSymbol parent_symbol;
  uint16_t child_index;
  TSFieldId field_id: 15;
  bool done: 1;
} AnalysisStateEntry;

typedef struct {
  AnalysisStateEntry stack[MAX_ANALYSIS_STATE_DEPTH];
  uint16_t depth;
  uint16_t step_index;
} AnalysisState;

typedef Array(AnalysisState *) AnalysisStateSet;

typedef Array(AnalysisState *) AnalysisStatePool;

/*
 * AnalysisSubgraph - A subset of the states in the parse table that are used
 * in constructing nodes with a certain symbol. Each state is accompanied by
 * some information about the possible node that could be produced in
 * downstream states.
 */
typedef struct {
  TSStateId state;
  uint8_t production_id;
  uint8_t child_index: 7;
  bool done: 1;
} AnalysisSubgraphNode;

typedef struct {
  TSSymbol symbol;
  Array(TSStateId) start_states;
  Array(AnalysisSubgraphNode) nodes;
} AnalysisSubgraph;

/*
 * StatePredecessorMap - A map that stores the predecessors of each parse state.
 * This is used during query analysis to determine which parse states can lead
 * to which reduce actions.
 */
typedef struct {
  TSStateId *contents;
} StatePredecessorMap;

/*
 * TSQuery - A tree query, compiled from a string of S-expressions. The query
 * itself is immutable. The mutable state used in the process of executing the
 * query is stored in a `TSQueryCursor`.
 */
struct TSQuery {
  SymbolTable captures;
  Array(CaptureQuantifiers) capture_quantifiers;
  SymbolTable predicate_values;
  Array(QueryStep) steps;
  Array(PatternEntry) pattern_map;
  Array(TSQueryPredicateStep) predicate_steps;
  Array(QueryPattern) patterns;
  Array(StepOffset) step_offsets;
  Array(TSFieldId) negated_fields;
  Array(char) string_buffer;
  const TSLanguage *language;
  uint16_t wildcard_root_pattern_count;
};

/*
 * TSQueryCursor - A stateful struct used to execute a query on a tree.
 */
struct TSQueryCursor {
  const TSQuery *query;
  TSTreeCursor cursor;
  Array(QueryState) states;
  Array(QueryState) finished_states;
  CaptureListPool capture_list_pool;
  uint32_t depth;
  uint32_t start_byte;
  uint32_t end_byte;
  TSPoint start_point;
  TSPoint end_point;
  uint32_t next_state_id;
  bool ascending;
  bool halted;
  bool did_exceed_match_limit;
};

static const TSQueryError PARENT_DONE = -1;
static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX;
static const uint16_t NONE = UINT16_MAX;
static const TSSymbol WILDCARD_SYMBOL = 0;

/**********
 * Stream
 **********/

// Advance to the next unicode code point in the stream.
static bool stream_advance(Stream *self) {
  self->input += self->next_size;
  if (self->input < self->end) {
    uint32_t size = ts_decode_utf8(
      (const uint8_t *)self->input,
      self->end - self->input,
      &self->next
    );
    if (size > 0) {
      self->next_size = size;
      return true;
    }
  } else {
    self->next_size = 0;
    self->next = '\0';
  }
  return false;
}

// Reset the stream to the given input position, represented as a pointer
// into the input string.
static void stream_reset(Stream *self, const char *input) {
  self->input = input;
  self->next_size = 0;
  stream_advance(self);
}

static Stream stream_new(const char *string, uint32_t length) {
  Stream self = {
    .next = 0,
    .input = string,
    .start = string,
    .end = string + length,
  };
  stream_advance(&self);
  return self;
}

static void stream_skip_whitespace(Stream *self) {
  for (;;) {
    if (iswspace(self->next)) {
      stream_advance(self);
    } else if (self->next == ';') {
      // skip over comments
      stream_advance(self);
      while (self->next && self->next != '\n') {
        if (!stream_advance(self)) break;
      }
    } else {
      break;
    }
  }
}

static bool stream_is_ident_start(Stream *self) {
  return iswalnum(self->next) || self->next == '_' || self->next == '-';
}

static void stream_scan_identifier(Stream *stream) {
  do {
    stream_advance(stream);
  } while (
    iswalnum(stream->next) ||
    stream->next == '_' ||
    stream->next == '-' ||
    stream->next == '.' ||
    stream->next == '?' ||
    stream->next == '!'
  );
}

static uint32_t stream_offset(Stream *self) {
  return self->input - self->start;
}

/******************
 * CaptureListPool
 ******************/

static CaptureListPool capture_list_pool_new(void) {
  return (CaptureListPool) {
    .list = array_new(),
    .empty_list = array_new(),
    .max_capture_list_count = UINT32_MAX,
    .free_capture_list_count = 0,
  };
}

static void capture_list_pool_reset(CaptureListPool *self) {
  for (uint16_t i = 0; i < self->list.size; i++) {
    // This invalid size means that the list is not in use.
    self->list.contents[i].size = UINT32_MAX;
  }
  self->free_capture_list_count = self->list.size;
}

static void capture_list_pool_delete(CaptureListPool *self) {
  for (uint16_t i = 0; i < self->list.size; i++) {
    array_delete(&self->list.contents[i]);
  }
  array_delete(&self->list);
}

static const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id) {
  if (id >= self->list.size) return &self->empty_list;
  return &self->list.contents[id];
}

static CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id) {
  assert(id < self->list.size);
  return &self->list.contents[id];
}

static bool capture_list_pool_is_empty(const CaptureListPool *self) {
  // The capture list pool is empty if all allocated lists are in use, and we
  // have reached the maximum allowed number of allocated lists.
  return self->free_capture_list_count == 0 && self->list.size >= self->max_capture_list_count;
}

static uint16_t capture_list_pool_acquire(CaptureListPool *self) {
  // First see if any already allocated capture list is currently unused.
  if (self->free_capture_list_count > 0) {
    for (uint16_t i = 0; i < self->list.size; i++) {
      if (self->list.contents[i].size == UINT32_MAX) {
        array_clear(&self->list.contents[i]);
        self->free_capture_list_count--;
        return i;
      }
    }
  }

  // Otherwise allocate and initialize a new capture list, as long as that
  // doesn't put us over the requested maximum.
  uint32_t i = self->list.size;
  if (i >= self->max_capture_list_count) {
    return NONE;
  }
  CaptureList list;
  array_init(&list);
  array_push(&self->list, list);
  return i;
}

static void capture_list_pool_release(CaptureListPool *self, uint16_t id) {
  if (id >= self->list.size) return;
  self->list.contents[id].size = UINT32_MAX;
  self->free_capture_list_count++;
}

/**************
 * Quantifiers
 **************/

static TSQuantifier quantifier_mul(
  TSQuantifier left,
  TSQuantifier right
) {
  switch (left)
  {
    case TSQuantifierZero:
      return TSQuantifierZero;
    case TSQuantifierZeroOrOne:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierZero;
        case TSQuantifierZeroOrOne:
        case TSQuantifierOne:
          return TSQuantifierZeroOrOne;
        case TSQuantifierZeroOrMore:
        case TSQuantifierOneOrMore:
          return TSQuantifierZeroOrMore;
      };
      break;
    case TSQuantifierZeroOrMore:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierZero;
        case TSQuantifierZeroOrOne:
        case TSQuantifierZeroOrMore:
        case TSQuantifierOne:
        case TSQuantifierOneOrMore:
          return TSQuantifierZeroOrMore;
      };
      break;
    case TSQuantifierOne:
      return right;
    case TSQuantifierOneOrMore:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierZero;
        case TSQuantifierZeroOrOne:
        case TSQuantifierZeroOrMore:
          return TSQuantifierZeroOrMore;
        case TSQuantifierOne:
        case TSQuantifierOneOrMore:
          return TSQuantifierOneOrMore;
      };
      break;
  }
  return TSQuantifierZero; // to make compiler happy, but all cases should be covered above!
}

static TSQuantifier quantifier_join(
  TSQuantifier left,
  TSQuantifier right
) {
  switch (left)
  {
    case TSQuantifierZero:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierZero;
        case TSQuantifierZeroOrOne:
        case TSQuantifierOne:
          return TSQuantifierZeroOrOne;
        case TSQuantifierZeroOrMore:
        case TSQuantifierOneOrMore:
          return TSQuantifierZeroOrMore;
      };
      break;
    case TSQuantifierZeroOrOne:
      switch (right) {
        case TSQuantifierZero:
        case TSQuantifierZeroOrOne:
        case TSQuantifierOne:
          return TSQuantifierZeroOrOne;
          break;
        case TSQuantifierZeroOrMore:
        case TSQuantifierOneOrMore:
          return TSQuantifierZeroOrMore;
          break;
      };
      break;
    case TSQuantifierZeroOrMore:
      return TSQuantifierZeroOrMore;
    case TSQuantifierOne:
      switch (right) {
        case TSQuantifierZero:
        case TSQuantifierZeroOrOne:
          return TSQuantifierZeroOrOne;
        case TSQuantifierZeroOrMore:
          return TSQuantifierZeroOrMore;
        case TSQuantifierOne:
          return TSQuantifierOne;
        case TSQuantifierOneOrMore:
          return TSQuantifierOneOrMore;
      };
      break;
    case TSQuantifierOneOrMore:
      switch (right) {
        case TSQuantifierZero:
        case TSQuantifierZeroOrOne:
        case TSQuantifierZeroOrMore:
          return TSQuantifierZeroOrMore;
        case TSQuantifierOne:
        case TSQuantifierOneOrMore:
          return TSQuantifierOneOrMore;
      };
      break;
  }
  return TSQuantifierZero; // to make compiler happy, but all cases should be covered above!
}

static TSQuantifier quantifier_add(
  TSQuantifier left,
  TSQuantifier right
) {
  switch (left)
  {
    case TSQuantifierZero:
      return right;
    case TSQuantifierZeroOrOne:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierZeroOrOne;
        case TSQuantifierZeroOrOne:
        case TSQuantifierZeroOrMore:
          return TSQuantifierZeroOrMore;
        case TSQuantifierOne:
        case TSQuantifierOneOrMore:
          return TSQuantifierOneOrMore;
      };
      break;
    case TSQuantifierZeroOrMore:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierZeroOrMore;
        case TSQuantifierZeroOrOne:
        case TSQuantifierZeroOrMore:
          return TSQuantifierZeroOrMore;
        case TSQuantifierOne:
        case TSQuantifierOneOrMore:
          return TSQuantifierOneOrMore;
      };
      break;
    case TSQuantifierOne:
      switch (right) {
        case TSQuantifierZero:
          return TSQuantifierOne;
        case TSQuantifierZeroOrOne:
        case TSQuantifierZeroOrMore:
        case TSQuantifierOne:
        case TSQuantifierOneOrMore:
          return TSQuantifierOneOrMore;
      };
      break;
    case TSQuantifierOneOrMore:
      return TSQuantifierOneOrMore;
  }
  return TSQuantifierZero; // to make compiler happy, but all cases should be covered above!
}

// Create new capture quantifiers structure
static CaptureQuantifiers capture_quantifiers_new(void) {
  return (CaptureQuantifiers) array_new();
}

// Delete capture quantifiers structure
static void capture_quantifiers_delete(
  CaptureQuantifiers *self
) {
  array_delete(self);
}

// Clear capture quantifiers structure
static void capture_quantifiers_clear(
  CaptureQuantifiers *self
) {
  array_clear(self);
}

// Replace capture quantifiers with the given quantifiers
static void capture_quantifiers_replace(
  CaptureQuantifiers *self,
  CaptureQuantifiers *quantifiers
) {
  array_clear(self);
  array_push_all(self, quantifiers);
}

// Return capture quantifier for the given capture id
static TSQuantifier capture_quantifier_for_id(
  const CaptureQuantifiers *self,
  uint16_t id
) {
  return (self->size <= id) ? TSQuantifierZero : (TSQuantifier) *array_get(self, id);
}

// Add the given quantifier to the current value for id
static void capture_quantifiers_add_for_id(
  CaptureQuantifiers *self,
  uint16_t id,
  TSQuantifier quantifier
) {
  if (self->size <= id) {
    array_grow_by(self, id + 1 - self->size);
  }
  uint8_t *own_quantifier = array_get(self, id);
  *own_quantifier = (uint8_t) quantifier_add((TSQuantifier) *own_quantifier, quantifier);
}

// Point-wise add the given quantifiers to the current values
static void capture_quantifiers_add_all(
  CaptureQuantifiers *self,
  CaptureQuantifiers *quantifiers
) {
  if (self->size < quantifiers->size) {
    array_grow_by(self, quantifiers->size - self->size);
  }
  for (uint16_t id = 0; id < quantifiers->size; id++) {
    uint8_t *quantifier = array_get(quantifiers, id);
    uint8_t *own_quantifier = array_get(self, id);
    *own_quantifier = (uint8_t) quantifier_add((TSQuantifier) *own_quantifier, (TSQuantifier) *quantifier);
  }
}

// Join the given quantifier with the current values
static void capture_quantifiers_mul(
  CaptureQuantifiers *self,
  TSQuantifier quantifier
) {
  for (uint16_t id = 0; id < self->size; id++) {
    uint8_t *own_quantifier = array_get(self, id);
    *own_quantifier = (uint8_t) quantifier_mul((TSQuantifier) *own_quantifier, quantifier);
  }
}

// Point-wise join the quantifiers from a list of alternatives with the current values
static void capture_quantifiers_join_all(
  CaptureQuantifiers *self,
  CaptureQuantifiers *quantifiers
) {
  if (self->size < quantifiers->size) {
    array_grow_by(self, quantifiers->size - self->size);
  }
  for (uint32_t id = 0; id < quantifiers->size; id++) {
    uint8_t *quantifier = array_get(quantifiers, id);
    uint8_t *own_quantifier = array_get(self, id);
    *own_quantifier = (uint8_t) quantifier_join((TSQuantifier) *own_quantifier, (TSQuantifier) *quantifier);
  }
  for (uint32_t id = quantifiers->size; id < self->size; id++) {
    uint8_t *own_quantifier = array_get(self, id);
    *own_quantifier = (uint8_t) quantifier_join((TSQuantifier) *own_quantifier, TSQuantifierZero);
  }
}

/**************
 * SymbolTable
 **************/

static SymbolTable symbol_table_new(void) {
  return (SymbolTable) {
    .characters = array_new(),
    .slices = array_new(),
  };
}

static void symbol_table_delete(SymbolTable *self) {
  array_delete(&self->characters);
  array_delete(&self->slices);
}

static int symbol_table_id_for_name(
  const SymbolTable *self,
  const char *name,
  uint32_t length
) {
  for (unsigned i = 0; i < self->slices.size; i++) {
    Slice slice = self->slices.contents[i];
    if (
      slice.length == length &&
      !strncmp(&self->characters.contents[slice.offset], name, length)
    ) return i;
  }
  return -1;
}

static const char *symbol_table_name_for_id(
  const SymbolTable *self,
  uint16_t id,
  uint32_t *length
) {
  Slice slice = self->slices.contents[id];
  *length = slice.length;
  return &self->characters.contents[slice.offset];
}

static uint16_t symbol_table_insert_name(
  SymbolTable *self,
  const char *name,
  uint32_t length
) {
  int id = symbol_table_id_for_name(self, name, length);
  if (id >= 0) return (uint16_t)id;
  Slice slice = {
    .offset = self->characters.size,
    .length = length,
  };
  array_grow_by(&self->characters, length + 1);
  memcpy(&self->characters.contents[slice.offset], name, length);
  self->characters.contents[self->characters.size - 1] = 0;
  array_push(&self->slices, slice);
  return self->slices.size - 1;
}

/************
 * QueryStep
 ************/

static QueryStep query_step__new(
  TSSymbol symbol,
  uint16_t depth,
  bool is_immediate
) {
  return (QueryStep) {
    .symbol = symbol,
    .depth = depth,
    .field = 0,
    .capture_ids = {NONE, NONE, NONE},
    .alternative_index = NONE,
    .negated_field_list_id = 0,
    .contains_captures = false,
    .is_last_child = false,
    .is_named = false,
    .is_pass_through = false,
    .is_dead_end = false,
    .root_pattern_guaranteed = false,
    .is_immediate = is_immediate,
    .alternative_is_immediate = false,
  };
}

static void query_step__add_capture(QueryStep *self, uint16_t capture_id) {
  for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) {
    if (self->capture_ids[i] == NONE) {
      self->capture_ids[i] = capture_id;
      break;
    }
  }
}

static void query_step__remove_capture(QueryStep *self, uint16_t capture_id) {
  for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) {
    if (self->capture_ids[i] == capture_id) {
      self->capture_ids[i] = NONE;
      while (i + 1 < MAX_STEP_CAPTURE_COUNT) {
        if (self->capture_ids[i + 1] == NONE) break;
        self->capture_ids[i] = self->capture_ids[i + 1];
        self->capture_ids[i + 1] = NONE;
        i++;
      }
      break;
    }
  }
}

/**********************
 * StatePredecessorMap
 **********************/

static inline StatePredecessorMap state_predecessor_map_new(
  const TSLanguage *language
) {
  return (StatePredecessorMap) {
    .contents = ts_calloc(
      (size_t)language->state_count * (MAX_STATE_PREDECESSOR_COUNT + 1),
      sizeof(TSStateId)
    ),
  };
}

static inline void state_predecessor_map_delete(StatePredecessorMap *self) {
  ts_free(self->contents);
}

static inline void state_predecessor_map_add(
  StatePredecessorMap *self,
  TSStateId state,
  TSStateId predecessor
) {
  size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1);
  TSStateId *count = &self->contents[index];
  if (
    *count == 0 ||
    (*count < MAX_STATE_PREDECESSOR_COUNT && self->contents[index + *count] != predecessor)
  ) {
    (*count)++;
    self->contents[index + *count] = predecessor;
  }
}

static inline const TSStateId *state_predecessor_map_get(
  const StatePredecessorMap *self,
  TSStateId state,
  unsigned *count
) {
  size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1);
  *count = self->contents[index];
  return &self->contents[index + 1];
}

/****************
 * AnalysisState
 ****************/

static unsigned analysis_state__recursion_depth(const AnalysisState *self) {
  unsigned result = 0;
  for (unsigned i = 0; i < self->depth; i++) {
    TSSymbol symbol = self->stack[i].parent_symbol;
    for (unsigned j = 0; j < i; j++) {
      if (self->stack[j].parent_symbol == symbol) {
        result++;
        break;
      }
    }
  }
  return result;
}

static inline int analysis_state__compare_position(
  AnalysisState *const *self,
  AnalysisState *const *other
) {
  for (unsigned i = 0; i < (*self)->depth; i++) {
    if (i >= (*other)->depth) return -1;
    if ((*self)->stack[i].child_index < (*other)->stack[i].child_index) return -1;
    if ((*self)->stack[i].child_index > (*other)->stack[i].child_index) return 1;
  }
  if ((*self)->depth < (*other)->depth) return 1;
  if ((*self)->step_index < (*other)->step_index) return -1;
  if ((*self)->step_index > (*other)->step_index) return 1;
  return 0;
}

static inline int analysis_state__compare(
  AnalysisState *const *self,
  AnalysisState *const *other
) {
  int result = analysis_state__compare_position(self, other);
  if (result != 0) return result;
  for (unsigned i = 0; i < (*self)->depth; i++) {
    if ((*self)->stack[i].parent_symbol < (*other)->stack[i].parent_symbol) return -1;
    if ((*self)->stack[i].parent_symbol > (*other)->stack[i].parent_symbol) return 1;
    if ((*self)->stack[i].parse_state < (*other)->stack[i].parse_state) return -1;
    if ((*self)->stack[i].parse_state > (*other)->stack[i].parse_state) return 1;
    if ((*self)->stack[i].field_id < (*other)->stack[i].field_id) return -1;
    if ((*self)->stack[i].field_id > (*other)->stack[i].field_id) return 1;
  }
  return 0;
}

static inline AnalysisStateEntry *analysis_state__top(AnalysisState *self) {
  return &self->stack[self->depth - 1];
}

static inline bool analysis_state__has_supertype(AnalysisState *self, TSSymbol symbol) {
  for (unsigned i = 0; i < self->depth; i++) {
    if (self->stack[i].parent_symbol == symbol) return true;
  }
  return false;
}

static inline AnalysisState *analysis_state__clone(AnalysisState const *self) {
  AnalysisState *new_state = ts_malloc(sizeof(AnalysisState));
  *new_state = *self;
  return new_state;
}

/****************
 * AnalysisStateSet
 ****************/

// Obtains an `AnalysisState` instance, either by consuming one from this set's object pool, or by
// cloning one from scratch.
static inline AnalysisState *analysis_state_pool__clone_or_reuse(
  AnalysisStatePool *self,
  AnalysisState *borrowed_item
) {
  AnalysisState *new_item;
  if (self->size) {
    new_item = array_pop(self);
    *new_item = *borrowed_item;
  } else {
    new_item = analysis_state__clone(borrowed_item);
  }

  return new_item;
}

// Inserts a clone of the passed-in item at the appropriate position to maintain ordering in this
// set. The set does not contain duplicates, so if the item is already present, it will not be
// inserted, and no clone will be made.
//
// The caller retains ownership of the passed-in memory. However, the clone that is created by this
// function will be managed by the state set.
static inline void analysis_state_set__insert_sorted_by_clone(
  AnalysisStateSet *self,
  AnalysisStatePool *pool,
  AnalysisState *borrowed_item
) {
  unsigned index, exists;
  array_search_sorted_with(self, analysis_state__compare, &borrowed_item, &index, &exists);
  if (!exists) {
    AnalysisState *new_item = analysis_state_pool__clone_or_reuse(pool, borrowed_item);
    array_insert(self, index, new_item);
  }
}

// Inserts a clone of the passed-in item at the end position of this list.
//
// IMPORTANT: The caller MUST ENSURE that this item is larger (by the comparison function
// `analysis_state__compare`) than largest item already in this set. If items are inserted in the
// wrong order, the set will not function properly for future use.
//
// The caller retains ownership of the passed-in memory. However, the clone that is created by this
// function will be managed by the state set.
static inline void analysis_state_set__push_by_clone(
  AnalysisStateSet *self,
  AnalysisStatePool *pool,
  AnalysisState *borrowed_item
) {
  AnalysisState *new_item = analysis_state_pool__clone_or_reuse(pool, borrowed_item);
  array_push(self, new_item);
}

// Removes all items from this set, returning it to an empty state.
static inline void analysis_state_set__clear(AnalysisStateSet *self, AnalysisStatePool *pool) {
  array_push_all(pool, self);
  array_clear(self);
}

// Releases all memory that is managed with this state set, including any items currently present.
// After calling this function, the set is no longer suitable for use.
static inline void analysis_state_set__delete(AnalysisStateSet *self) {
  for (unsigned i = 0; i < self->size; i++) {
    ts_free(self->contents[i]);
  }
  array_delete(self);
}

/***********************
 * AnalysisSubgraphNode
 ***********************/

static inline int analysis_subgraph_node__compare(const AnalysisSubgraphNode *self, const AnalysisSubgraphNode *other) {
  if (self->state < other->state) return -1;
  if (self->state > other->state) return 1;
  if (self->child_index < other->child_index) return -1;
  if (self->child_index > other->child_index) return 1;
  if (self->done < other->done) return -1;
  if (self->done > other->done) return 1;
  if (self->production_id < other->production_id) return -1;
  if (self->production_id > other->production_id) return 1;
  return 0;
}

/*********
 * Query
 *********/

// The `pattern_map` contains a mapping from TSSymbol values to indices in the
// `steps` array. For a given syntax node, the `pattern_map` makes it possible
// to quickly find the starting steps of all of the patterns whose root matches
// that node. Each entry has two fields: a `pattern_index`, which identifies one
// of the patterns in the query, and a `step_index`, which indicates the start
// offset of that pattern's steps within the `steps` array.
//
// The entries are sorted by the patterns' root symbols, and lookups use a
// binary search. This ensures that the cost of this initial lookup step
// scales logarithmically with the number of patterns in the query.
//
// This returns `true` if the symbol is present and `false` otherwise.
// If the symbol is not present `*result` is set to the index where the
// symbol should be inserted.
static inline bool ts_query__pattern_map_search(
  const TSQuery *self,
  TSSymbol needle,
  uint32_t *result
) {
  uint32_t base_index = self->wildcard_root_pattern_count;
  uint32_t size = self->pattern_map.size - base_index;
  if (size == 0) {
    *result = base_index;
    return false;
  }
  while (size > 1) {
    uint32_t half_size = size / 2;
    uint32_t mid_index = base_index + half_size;
    TSSymbol mid_symbol = self->steps.contents[
      self->pattern_map.contents[mid_index].step_index
    ].symbol;
    if (needle > mid_symbol) base_index = mid_index;
    size -= half_size;
  }

  TSSymbol symbol = self->steps.contents[
    self->pattern_map.contents[base_index].step_index
  ].symbol;

  if (needle > symbol) {
    base_index++;
    if (base_index < self->pattern_map.size) {
      symbol = self->steps.contents[
        self->pattern_map.contents[base_index].step_index
      ].symbol;
    }
  }

  *result = base_index;
  return needle == symbol;
}

// Insert a new pattern's start index into the pattern map, maintaining
// the pattern map's ordering invariant.
static inline void ts_query__pattern_map_insert(
  TSQuery *self,
  TSSymbol symbol,
  PatternEntry new_entry
) {
  uint32_t index;
  ts_query__pattern_map_search(self, symbol, &index);

  // Ensure that the entries are sorted not only by symbol, but also
  // by pattern_index. This way, states for earlier patterns will be
  // initiated first, which allows the ordering of the states array
  // to be maintained more efficiently.
  while (index < self->pattern_map.size) {
    PatternEntry *entry = &self->pattern_map.contents[index];
    if (
      self->steps.contents[entry->step_index].symbol == symbol &&
      entry->pattern_index < new_entry.pattern_index
    ) {
      index++;
    } else {
      break;
    }
  }

  array_insert(&self->pattern_map, index, new_entry);
}

static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) {
  // Walk forward through all of the steps in the query, computing some
  // basic information about each step. Mark all of the steps that contain
  // captures, and record the indices of all of the steps that have child steps.
  Array(uint32_t) parent_step_indices = array_new();
  for (unsigned i = 0; i < self->steps.size; i++) {
    QueryStep *step = &self->steps.contents[i];
    if (step->depth == PATTERN_DONE_MARKER) {
      step->parent_pattern_guaranteed = true;
      step->root_pattern_guaranteed = true;
      continue;
    }

    bool has_children = false;
    bool is_wildcard = step->symbol == WILDCARD_SYMBOL;
    step->contains_captures = step->capture_ids[0] != NONE;
    for (unsigned j = i + 1; j < self->steps.size; j++) {
      QueryStep *next_step = &self->steps.contents[j];
      if (
        next_step->depth == PATTERN_DONE_MARKER ||
        next_step->depth <= step->depth
      ) break;
      if (next_step->capture_ids[0] != NONE) {
        step->contains_captures = true;
      }
      if (!is_wildcard) {
        next_step->root_pattern_guaranteed = true;
        next_step->parent_pattern_guaranteed = true;
      }
      has_children = true;
    }

    if (has_children && !is_wildcard) {
      array_push(&parent_step_indices, i);
    }
  }

  // For every parent symbol in the query, initialize an 'analysis subgraph'.
  // This subgraph lists all of the states in the parse table that are directly
  // involved in building subtrees for this symbol.
  //
  // In addition to the parent symbols in the query, construct subgraphs for all
  // of the hidden symbols in the grammar, because these might occur within
  // one of the parent nodes, such that their children appear to belong to the
  // parent.
  Array(AnalysisSubgraph) subgraphs = array_new();
  for (unsigned i = 0; i < parent_step_indices.size; i++) {
    uint32_t parent_step_index = parent_step_indices.contents[i];
    TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol;
    AnalysisSubgraph subgraph = { .symbol = parent_symbol };
    array_insert_sorted_by(&subgraphs, .symbol, subgraph);
  }
  for (TSSymbol sym = self->language->token_count; sym < self->language->symbol_count; sym++) {
    if (!ts_language_symbol_metadata(self->language, sym).visible) {
      AnalysisSubgraph subgraph = { .symbol = sym };
      array_insert_sorted_by(&subgraphs, .symbol, subgraph);
    }
  }

  // Scan the parse table to find the data needed to populate these subgraphs.
  // Collect three things during this scan:
  //   1) All of the parse states where one of these symbols can start.
  //   2) All of the parse states where one of these symbols can end, along
  //      with information about the node that would be created.
  //   3) A list of predecessor states for each state.
  StatePredecessorMap predecessor_map = state_predecessor_map_new(self->language);
  for (TSStateId state = 1; state < self->language->state_count; state++) {
    unsigned subgraph_index, exists;
    LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, state);
    while (ts_lookahead_iterator_next(&lookahead_iterator)) {
      if (lookahead_iterator.action_count) {
        for (unsigned i = 0; i < lookahead_iterator.action_count; i++) {
          const TSParseAction *action = &lookahead_iterator.actions[i];
          if (action->type == TSParseActionTypeReduce) {
            const TSSymbol *aliases, *aliases_end;
            ts_language_aliases_for_symbol(
              self->language,
              action->reduce.symbol,
              &aliases,
              &aliases_end
            );
            for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) {
              array_search_sorted_by(
                &subgraphs,
                .symbol,
                *symbol,
                &subgraph_index,
                &exists
              );
              if (exists) {
                AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
                if (subgraph->nodes.size == 0 || array_back(&subgraph->nodes)->state != state) {
                  array_push(&subgraph->nodes, ((AnalysisSubgraphNode) {
                    .state = state,
                    .production_id = action->reduce.production_id,
                    .child_index = action->reduce.child_count,
                    .done = true,
                  }));
                }
              }
            }
          } else if (action->type == TSParseActionTypeShift && !action->shift.extra) {
            TSStateId next_state = action->shift.state;
            state_predecessor_map_add(&predecessor_map, next_state, state);
          }
        }
      } else if (lookahead_iterator.next_state != 0) {
        if (lookahead_iterator.next_state != state) {
          state_predecessor_map_add(&predecessor_map, lookahead_iterator.next_state, state);
        }
        if (ts_language_state_is_primary(self->language, state)) {
          const TSSymbol *aliases, *aliases_end;
          ts_language_aliases_for_symbol(
            self->language,
            lookahead_iterator.symbol,
            &aliases,
            &aliases_end
          );
          for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) {
            array_search_sorted_by(
              &subgraphs,
              .symbol,
              *symbol,
              &subgraph_index,
              &exists
            );
            if (exists) {
              AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
              if (
                subgraph->start_states.size == 0 ||
                *array_back(&subgraph->start_states) != state
              )
              array_push(&subgraph->start_states, state);
            }
          }
        }
      }
    }
  }

  // For each subgraph, compute the preceding states by walking backward
  // from the end states using the predecessor map.
  Array(AnalysisSubgraphNode) next_nodes = array_new();
  for (unsigned i = 0; i < subgraphs.size; i++) {
    AnalysisSubgraph *subgraph = &subgraphs.contents[i];
    if (subgraph->nodes.size == 0) {
      array_delete(&subgraph->start_states);
      array_erase(&subgraphs, i);
      i--;
      continue;
    }
    array_assign(&next_nodes, &subgraph->nodes);
    while (next_nodes.size > 0) {
      AnalysisSubgraphNode node = array_pop(&next_nodes);
      if (node.child_index > 1) {
        unsigned predecessor_count;
        const TSStateId *predecessors = state_predecessor_map_get(
          &predecessor_map,
          node.state,
          &predecessor_count
        );
        for (unsigned j = 0; j < predecessor_count; j++) {
          AnalysisSubgraphNode predecessor_node = {
            .state = predecessors[j],
            .child_index = node.child_index - 1,
            .production_id = node.production_id,
            .done = false,
          };
          unsigned index, exists;
          array_search_sorted_with(
            &subgraph->nodes, analysis_subgraph_node__compare, &predecessor_node,
            &index, &exists
          );
          if (!exists) {
            array_insert(&subgraph->nodes, index, predecessor_node);
            array_push(&next_nodes, predecessor_node);
          }
        }
      }
    }
  }

  #ifdef DEBUG_ANALYZE_QUERY
    printf("\nSubgraphs:\n");
    for (unsigned i = 0; i < subgraphs.size; i++) {
      AnalysisSubgraph *subgraph = &subgraphs.contents[i];
      printf("  %u, %s:\n", subgraph->symbol, ts_language_symbol_name(self->language, subgraph->symbol));
      for (unsigned j = 0; j < subgraph->start_states.size; j++) {
        printf(
          "    {state: %u}\n",
          subgraph->start_states.contents[j]
        );
      }
      for (unsigned j = 0; j < subgraph->nodes.size; j++) {
        AnalysisSubgraphNode *node = &subgraph->nodes.contents[j];
        printf(
          "    {state: %u, child_index: %u, production_id: %u, done: %d}\n",
          node->state, node->child_index, node->production_id, node->done
        );
      }
      printf("\n");
    }
  #endif

  // For each non-terminal pattern, determine if the pattern can successfully match,
  // and identify all of the possible children within the pattern where matching could fail.
  bool all_patterns_are_valid = true;
  AnalysisStateSet states = array_new();
  AnalysisStateSet next_states = array_new();
  AnalysisStateSet deeper_states = array_new();
  AnalysisStatePool state_pool = array_new();
  Array(uint16_t) final_step_indices = array_new();
  for (unsigned i = 0; i < parent_step_indices.size; i++) {
    uint16_t parent_step_index = parent_step_indices.contents[i];
    uint16_t parent_depth = self->steps.contents[parent_step_index].depth;
    TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol;
    if (parent_symbol == ts_builtin_sym_error) continue;

    // Find the subgraph that corresponds to this pattern's root symbol. If the pattern's
    // root symbol is a terminal, then return an error.
    unsigned subgraph_index, exists;
    array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists);
    if (!exists) {
      unsigned first_child_step_index = parent_step_index + 1;
      uint32_t i, exists;
      array_search_sorted_by(&self->step_offsets, .step_index, first_child_step_index, &i, &exists);
      assert(exists);
      *error_offset = self->step_offsets.contents[i].byte_offset;
      all_patterns_are_valid = false;
      break;
    }

    // Initialize an analysis state at every parse state in the table where
    // this parent symbol can occur.
    AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];
    analysis_state_set__clear(&states, &state_pool);
    analysis_state_set__clear(&deeper_states, &state_pool);
    for (unsigned j = 0; j < subgraph->start_states.size; j++) {
      TSStateId parse_state = subgraph->start_states.contents[j];
      analysis_state_set__push_by_clone(&states, &state_pool, &((AnalysisState) {
        .step_index = parent_step_index + 1,
        .stack = {
          [0] = {
            .parse_state = parse_state,
            .parent_symbol = parent_symbol,
            .child_index = 0,
            .field_id = 0,
            .done = false,
          },
        },
        .depth = 1,
      }));
    }

    // Walk the subgraph for this non-terminal, tracking all of the possible
    // sequences of progress within the pattern.
    bool can_finish_pattern = false;
    bool did_abort_analysis = false;
    unsigned recursion_depth_limit = 0;
    unsigned prev_final_step_count = 0;
    array_clear(&final_step_indices);
    for (unsigned iteration = 0;; iteration++) {
      if (iteration == MAX_ANALYSIS_ITERATION_COUNT) {
        did_abort_analysis = true;
        break;
      }

      #ifdef DEBUG_ANALYZE_QUERY
        printf("Iteration: %u. Final step indices:", iteration);
        for (unsigned j = 0; j < final_step_indices.size; j++) {
          printf(" %4u", final_step_indices.contents[j]);
        }
        printf("\nWalk states for %u %s:\n", i, ts_language_symbol_name(self->language, parent_symbol));
        for (unsigned j = 0; j < states.size; j++) {
          AnalysisState *state = states.contents[j];
          printf("  %3u: step: %u, stack: [", j, state->step_index);
          for (unsigned k = 0; k < state->depth; k++) {
            printf(
              " {%s, child: %u, state: %4u",
              self->language->symbol_names[state->stack[k].parent_symbol],
              state->stack[k].child_index,
              state->stack[k].parse_state
            );
            if (state->stack[k].field_id) printf(", field: %s", self->language->field_names[state->stack[k].field_id]);
            if (state->stack[k].done) printf(", DONE");
            printf("}");
          }
          printf(" ]\n");
        }
      #endif

      // If no further progress can be made within the current recursion depth limit, then
      // bump the depth limit by one, and continue to process the states the exceeded the
      // limit. But only allow this if progress has been made since the last time the depth
      // limit was increased.
      if (states.size == 0) {
        if (
            deeper_states.size > 0
            && final_step_indices.size > prev_final_step_count
        ) {
          #ifdef DEBUG_ANALYZE_QUERY
            printf("Increase recursion depth limit to %u\n", recursion_depth_limit + 1);
          #endif

          prev_final_step_count = final_step_indices.size;
          recursion_depth_limit++;
          AnalysisStateSet _states = states;
          states = deeper_states;
          deeper_states = _states;
          continue;
        }

        break;
      }

      analysis_state_set__clear(&next_states, &state_pool);
      for (unsigned j = 0; j < states.size; j++) {
        AnalysisState * const state = states.contents[j];

        // For efficiency, it's important to avoid processing the same analysis state more
        // than once. To achieve this, keep the states in order of ascending position within
        // their hypothetical syntax trees. In each iteration of this loop, start by advancing
        // the states that have made the least progress. Avoid advancing states that have already
        // made more progress.
        if (next_states.size > 0) {
          int comparison = analysis_state__compare_position(
            &state,
            array_back(&next_states)
          );
          if (comparison == 0) {
            #ifdef DEBUG_ANALYZE_QUERY
              printf("Skip iteration for state %u\n", j);
            #endif
            analysis_state_set__insert_sorted_by_clone(&next_states, &state_pool, state);
            continue;
          } else if (comparison > 0) {
            #ifdef DEBUG_ANALYZE_QUERY
              printf("Terminate iteration at state %u\n", j);
            #endif
            while (j < states.size) {
              analysis_state_set__push_by_clone(
                &next_states,
                &state_pool,
                states.contents[j]
              );
              j++;
            }
            break;
          }
        }

        const TSStateId parse_state = analysis_state__top(state)->parse_state;
        const TSSymbol parent_symbol = analysis_state__top(state)->parent_symbol;
        const TSFieldId parent_field_id = analysis_state__top(state)->field_id;
        const unsigned child_index = analysis_state__top(state)->child_index;
        const QueryStep * const step = &self->steps.contents[state->step_index];

        unsigned subgraph_index, exists;
        array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists);
        if (!exists) continue;
        const AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index];

        // Follow every possible path in the parse table, but only visit states that
        // are part of the subgraph for the current symbol.
        LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, parse_state);
        while (ts_lookahead_iterator_next(&lookahead_iterator)) {
          TSSymbol sym = lookahead_iterator.symbol;

          AnalysisSubgraphNode successor = {
            .state = parse_state,
            .child_index = child_index,
          };
          if (lookahead_iterator.action_count) {
            const TSParseAction *action = &lookahead_iterator.actions[lookahead_iterator.action_count - 1];
            if (action->type == TSParseActionTypeShift) {
              if (!action->shift.extra) {
                successor.state = action->shift.state;
                successor.child_index++;
              }
            } else {
              continue;
            }
          } else if (lookahead_iterator.next_state != 0) {
            successor.state = lookahead_iterator.next_state;
            successor.child_index++;
          } else {
            continue;
          }

          unsigned node_index;
          array_search_sorted_with(
            &subgraph->nodes,
            analysis_subgraph_node__compare, &successor,
            &node_index, &exists
          );
          while (node_index < subgraph->nodes.size) {
            AnalysisSubgraphNode *node = &subgraph->nodes.contents[node_index++];
            if (node->state != successor.state || node->child_index != successor.child_index) break;

            // Use the subgraph to determine what alias and field will eventually be applied
            // to this child node.
            TSSymbol alias = ts_language_alias_at(self->language, node->production_id, child_index);
            TSSymbol visible_symbol = alias
              ? alias
              : self->language->symbol_metadata[sym].visible
                ? self->language->public_symbol_map[sym]
                : 0;
            TSFieldId field_id = parent_field_id;
            if (!field_id) {
              const TSFieldMapEntry *field_map, *field_map_end;
              ts_language_field_map(self->language, node->production_id, &field_map, &field_map_end);
              for (; field_map != field_map_end; field_map++) {
                if (!field_map->inherited && field_map->child_index == child_index) {
                  field_id = field_map->field_id;
                  break;
                }
              }
            }

            // Create a new state that has advanced past this hypothetical subtree.
            AnalysisState next_state = *state;
            AnalysisStateEntry *next_state_top = analysis_state__top(&next_state);
            next_state_top->child_index = successor.child_index;
            next_state_top->parse_state = successor.state;
            if (node->done) next_state_top->done = true;

            // Determine if this hypothetical child node would match the current step
            // of the query pattern.
            bool does_match = false;
            if (visible_symbol) {
              does_match = true;
              if (step->symbol == WILDCARD_SYMBOL) {
                if (
                  step->is_named &&
                  !self->language->symbol_metadata[visible_symbol].named
                ) does_match = false;
              } else if (step->symbol != visible_symbol) {
                does_match = false;
              }
              if (step->field && step->field != field_id) {
                does_match = false;
              }
              if (
                step->supertype_symbol &&
                !analysis_state__has_supertype(state, step->supertype_symbol)
              ) does_match = false;
            }

            // If this child is hidden, then descend into it and walk through its children.
            // If the top entry of the stack is at the end of its rule, then that entry can
            // be replaced. Otherwise, push a new entry onto the stack.
            else if (sym >= self->language->token_count) {
              if (!next_state_top->done) {
                if (next_state.depth + 1 >= MAX_ANALYSIS_STATE_DEPTH) {
                  #ifdef DEBUG_ANALYZE_QUERY
                    printf("Exceeded depth limit for state %u\n", j);
                  #endif

                  did_abort_analysis = true;
                  continue;
                }

                next_state.depth++;
                next_state_top = analysis_state__top(&next_state);
              }

              *next_state_top = (AnalysisStateEntry) {
                .parse_state = parse_state,
                .parent_symbol = sym,
                .child_index = 0,
                .field_id = field_id,
                .done = false,
              };

              if (analysis_state__recursion_depth(&next_state) > recursion_depth_limit) {
                analysis_state_set__insert_sorted_by_clone(
                  &deeper_states,
                  &state_pool,
                  &next_state
                );
                continue;
              }
            }

            // Pop from the stack when this state reached the end of its current syntax node.
            while (next_state.depth > 0 && next_state_top->done) {
              next_state.depth--;
              next_state_top = analysis_state__top(&next_state);
            }

            // If this hypothetical child did match the current step of the query pattern,
            // then advance to the next step at the current depth. This involves skipping
            // over any descendant steps of the current child.
            const QueryStep *next_step = step;
            if (does_match) {
              for (;;) {
                next_state.step_index++;
                next_step = &self->steps.contents[next_state.step_index];
                if (
                  next_step->depth == PATTERN_DONE_MARKER ||
                  next_step->depth <= parent_depth + 1
                ) break;
              }
            } else if (successor.state == parse_state) {
              continue;
            }

            for (;;) {
              // Skip pass-through states. Although these states have alternatives, they are only
              // used to implement repetitions, and query analysis does not need to process
              // repetitions in order to determine whether steps are possible and definite.
              if (next_step->is_pass_through) {
                next_state.step_index++;
                next_step++;
                continue;
              }

              // If the pattern is finished or hypothetical parent node is complete, then
              // record that matching can terminate at this step of the pattern. Otherwise,
              // add this state to the list of states to process on the next iteration.
              if (!next_step->is_dead_end) {
                bool did_finish_pattern = self->steps.contents[next_state.step_index].depth != parent_depth + 1;
                if (did_finish_pattern) can_finish_pattern = true;
                if (did_finish_pattern || next_state.depth == 0) {
                  array_insert_sorted_by(&final_step_indices, , next_state.step_index);
                } else {
                  analysis_state_set__insert_sorted_by_clone(&next_states, &state_pool, &next_state);
                }
              }

              // If the state has advanced to a step with an alternative step, then add another state
              // at that alternative step. This process is simpler than the process of actually matching a
              // pattern during query exection, because for the purposes of query analysis, there is no
              // need to process repetitions.
              if (
                does_match &&
                next_step->alternative_index != NONE &&
                next_step->alternative_index > next_state.step_index
              ) {
                next_state.step_index = next_step->alternative_index;
                next_step = &self->steps.contents[next_state.step_index];
              } else {
                break;
              }
            }
          }
        }
      }

      AnalysisStateSet _states = states;
      states = next_states;
      next_states = _states;
    }

    // If this pattern could not be fully analyzed, then every step should
    // be considered fallible.
    if (did_abort_analysis) {
      for (unsigned j = parent_step_index + 1; j < self->steps.size; j++) {
        QueryStep *step = &self->steps.contents[j];
        if (
          step->depth <= parent_depth ||
          step->depth == PATTERN_DONE_MARKER
        ) break;
        if (!step->is_dead_end) {
          step->parent_pattern_guaranteed = false;
          step->root_pattern_guaranteed = false;
        }
      }
      continue;
    }

    // If this pattern cannot match, store the pattern index so that it can be
    // returned to the caller.
    if (!can_finish_pattern) {
      assert(final_step_indices.size > 0);
      uint16_t impossible_step_index = *array_back(&final_step_indices);
      uint32_t i, exists;
      array_search_sorted_by(&self->step_offsets, .step_index, impossible_step_index, &i, &exists);
      if (i >= self->step_offsets.size) i = self->step_offsets.size - 1;
      *error_offset = self->step_offsets.contents[i].byte_offset;
      all_patterns_are_valid = false;
      break;
    }

    // Mark as fallible any step where a match terminated.
    // Later, this property will be propagated to all of the step's predecessors.
    for (unsigned j = 0; j < final_step_indices.size; j++) {
      uint32_t final_step_index = final_step_indices.contents[j];
      QueryStep *step = &self->steps.contents[final_step_index];
      if (
        step->depth != PATTERN_DONE_MARKER &&
        step->depth > parent_depth &&
        !step->is_dead_end
      ) {
        step->parent_pattern_guaranteed = false;
        step->root_pattern_guaranteed = false;
      }
    }
  }

  // Mark as indefinite any step with captures that are used in predicates.
  Array(uint16_t) predicate_capture_ids = array_new();
  for (unsigned i = 0; i < self->patterns.size; i++) {
    QueryPattern *pattern = &self->patterns.contents[i];

    // Gather all of the captures that are used in predicates for this pattern.
    array_clear(&predicate_capture_ids);
    for (
      unsigned start = pattern->predicate_steps.offset,
      end = start + pattern->predicate_steps.length,
      j = start; j < end; j++
    ) {
      TSQueryPredicateStep *step = &self->predicate_steps.contents[j];
      if (step->type == TSQueryPredicateStepTypeCapture) {
        array_insert_sorted_by(&predicate_capture_ids, , step->value_id);
      }
    }

    // Find all of the steps that have these captures.
    for (
      unsigned start = pattern->steps.offset,
      end = start + pattern->steps.length,
      j = start; j < end; j++
    ) {
      QueryStep *step = &self->steps.contents[j];
      for (unsigned k = 0; k < MAX_STEP_CAPTURE_COUNT; k++) {
        uint16_t capture_id = step->capture_ids[k];
        if (capture_id == NONE) break;
        unsigned index, exists;
        array_search_sorted_by(&predicate_capture_ids, , capture_id, &index, &exists);
        if (exists) {
          step->root_pattern_guaranteed = false;
          break;
        }
      }
    }
  }

  // Propagate fallibility. If a pattern is fallible at a given step, then it is
  // fallible at all of its preceding steps.
  bool done = self->steps.size == 0;
  while (!done) {
    done = true;
    for (unsigned i = self->steps.size - 1; i > 0; i--) {
      QueryStep *step = &self->steps.contents[i];
      if (step->depth == PATTERN_DONE_MARKER) continue;

      // Determine if this step is definite or has definite alternatives.
      bool parent_pattern_guaranteed = false;
      for (;;) {
        if (step->root_pattern_guaranteed) {
          parent_pattern_guaranteed = true;
          break;
        }
        if (step->alternative_index == NONE || step->alternative_index < i) {
          break;
        }
        step = &self->steps.contents[step->alternative_index];
      }

      // If not, mark its predecessor as indefinite.
      if (!parent_pattern_guaranteed) {
        QueryStep *prev_step = &self->steps.contents[i - 1];
        if (
          !prev_step->is_dead_end &&
          prev_step->depth != PATTERN_DONE_MARKER &&
          prev_step->root_pattern_guaranteed
        ) {
          prev_step->root_pattern_guaranteed = false;
          done = false;
        }
      }
    }
  }

  #ifdef DEBUG_ANALYZE_QUERY
    printf("Steps:\n");
    for (unsigned i = 0; i < self->steps.size; i++) {
      QueryStep *step = &self->steps.contents[i];
      if (step->depth == PATTERN_DONE_MARKER) {
        printf("  %u: DONE\n", i);
      } else {
        printf(
          "  %u: {symbol: %s, field: %s, depth: %u, parent_pattern_guaranteed: %d, root_pattern_guaranteed: %d}\n",
          i,
          (step->symbol == WILDCARD_SYMBOL)
            ? "ANY"
            : ts_language_symbol_name(self->language, step->symbol),
          (step->field ? ts_language_field_name_for_id(self->language, step->field) : "-"),
          step->depth,
          step->parent_pattern_guaranteed,
          step->root_pattern_guaranteed
        );
      }
    }
  #endif

  // Cleanup
  for (unsigned i = 0; i < subgraphs.size; i++) {
    array_delete(&subgraphs.contents[i].start_states);
    array_delete(&subgraphs.contents[i].nodes);
  }
  array_delete(&subgraphs);
  for (unsigned i = 0; i < state_pool.size; i++) {
    ts_free(state_pool.contents[i]);
  }
  array_delete(&state_pool);
  array_delete(&next_nodes);
  analysis_state_set__delete(&states);
  analysis_state_set__delete(&next_states);
  analysis_state_set__delete(&deeper_states);
  array_delete(&final_step_indices);
  array_delete(&parent_step_indices);
  array_delete(&predicate_capture_ids);
  state_predecessor_map_delete(&predecessor_map);

  return all_patterns_are_valid;
}

static void ts_query__add_negated_fields(
  TSQuery *self,
  uint16_t step_index,
  TSFieldId *field_ids,
  uint16_t field_count
) {
  QueryStep *step = &self->steps.contents[step_index];

  // The negated field array stores a list of field lists, separated by zeros.
  // Try to find the start index of an existing list that matches this new list.
  bool failed_match = false;
  unsigned match_count = 0;
  unsigned start_i = 0;
  for (unsigned i = 0; i < self->negated_fields.size; i++) {
    TSFieldId existing_field_id = self->negated_fields.contents[i];

    // At each zero value, terminate the match attempt. If we've exactly
    // matched the new field list, then reuse this index. Otherwise,
    // start over the matching process.
    if (existing_field_id == 0) {
      if (match_count == field_count) {
        step->negated_field_list_id = start_i;
        return;
      } else {
        start_i = i + 1;
        match_count = 0;
        failed_match = false;
      }
    }

    // If the existing list matches our new list so far, then advance
    // to the next element of the new list.
    else if (
      match_count < field_count &&
      existing_field_id == field_ids[match_count] &&
      !failed_match
    ) {
      match_count++;
    }

    // Otherwise, this existing list has failed to match.
    else {
      match_count = 0;
      failed_match = true;
    }
  }

  step->negated_field_list_id = self->negated_fields.size;
  array_extend(&self->negated_fields, field_count, field_ids);
  array_push(&self->negated_fields, 0);
}

static TSQueryError ts_query__parse_string_literal(
  TSQuery *self,
  Stream *stream
) {
  const char *string_start = stream->input;
  if (stream->next != '"') return TSQueryErrorSyntax;
  stream_advance(stream);
  const char *prev_position = stream->input;

  bool is_escaped = false;
  array_clear(&self->string_buffer);
  for (;;) {
    if (is_escaped) {
      is_escaped = false;
      switch (stream->next) {
        case 'n':
          array_push(&self->string_buffer, '\n');
          break;
        case 'r':
          array_push(&self->string_buffer, '\r');
          break;
        case 't':
          array_push(&self->string_buffer, '\t');
          break;
        case '0':
          array_push(&self->string_buffer, '\0');
          break;
        default:
          array_extend(&self->string_buffer, stream->next_size, stream->input);
          break;
      }
      prev_position = stream->input + stream->next_size;
    } else {
      if (stream->next == '\\') {
        array_extend(&self->string_buffer, (stream->input - prev_position), prev_position);
        prev_position = stream->input + 1;
        is_escaped = true;
      } else if (stream->next == '"') {
        array_extend(&self->string_buffer, (stream->input - prev_position), prev_position);
        stream_advance(stream);
        return TSQueryErrorNone;
      } else if (stream->next == '\n') {
        stream_reset(stream, string_start);
        return TSQueryErrorSyntax;
      }
    }
    if (!stream_advance(stream)) {
      stream_reset(stream, string_start);
      return TSQueryErrorSyntax;
    }
  }
}

// Parse a single predicate associated with a pattern, adding it to the
// query's internal `predicate_steps` array. Predicates are arbitrary
// S-expressions associated with a pattern which are meant to be handled at
// a higher level of abstraction, such as the Rust/JavaScript bindings. They
// can contain '@'-prefixed capture names, double-quoted strings, and bare
// symbols, which also represent strings.
static TSQueryError ts_query__parse_predicate(
  TSQuery *self,
  Stream *stream
) {
  if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
  const char *predicate_name = stream->input;
  stream_scan_identifier(stream);
  uint32_t length = stream->input - predicate_name;
  uint16_t id = symbol_table_insert_name(
    &self->predicate_values,
    predicate_name,
    length
  );
  array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
    .type = TSQueryPredicateStepTypeString,
    .value_id = id,
  }));
  stream_skip_whitespace(stream);

  for (;;) {
    if (stream->next == ')') {
      stream_advance(stream);
      stream_skip_whitespace(stream);
      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeDone,
        .value_id = 0,
      }));
      break;
    }

    // Parse an '@'-prefixed capture name
    else if (stream->next == '@') {
      stream_advance(stream);

      // Parse the capture name
      if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
      const char *capture_name = stream->input;
      stream_scan_identifier(stream);
      uint32_t length = stream->input - capture_name;

      // Add the capture id to the first step of the pattern
      int capture_id = symbol_table_id_for_name(
        &self->captures,
        capture_name,
        length
      );
      if (capture_id == -1) {
        stream_reset(stream, capture_name);
        return TSQueryErrorCapture;
      }

      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeCapture,
        .value_id = capture_id,
      }));
    }

    // Parse a string literal
    else if (stream->next == '"') {
      TSQueryError e = ts_query__parse_string_literal(self, stream);
      if (e) return e;
      uint16_t id = symbol_table_insert_name(
        &self->predicate_values,
        self->string_buffer.contents,
        self->string_buffer.size
      );
      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeString,
        .value_id = id,
      }));
    }

    // Parse a bare symbol
    else if (stream_is_ident_start(stream)) {
      const char *symbol_start = stream->input;
      stream_scan_identifier(stream);
      uint32_t length = stream->input - symbol_start;
      uint16_t id = symbol_table_insert_name(
        &self->predicate_values,
        symbol_start,
        length
      );
      array_push(&self->predicate_steps, ((TSQueryPredicateStep) {
        .type = TSQueryPredicateStepTypeString,
        .value_id = id,
      }));
    }

    else {
      return TSQueryErrorSyntax;
    }

    stream_skip_whitespace(stream);
  }

  return 0;
}

// Read one S-expression pattern from the stream, and incorporate it into
// the query's internal state machine representation. For nested patterns,
// this function calls itself recursively.
//
// The caller is repsonsible for passing in a dedicated CaptureQuantifiers.
// These should not be shared between different calls to ts_query__parse_pattern!
static TSQueryError ts_query__parse_pattern(
  TSQuery *self,
  Stream *stream,
  uint32_t depth,
  bool is_immediate,
  CaptureQuantifiers *capture_quantifiers
) {
  if (stream->next == 0) return TSQueryErrorSyntax;
  if (stream->next == ')' || stream->next == ']') return PARENT_DONE;

  const uint32_t starting_step_index = self->steps.size;

  // Store the byte offset of each step in the query.
  if (
    self->step_offsets.size == 0 ||
    array_back(&self->step_offsets)->step_index != starting_step_index
  ) {
    array_push(&self->step_offsets, ((StepOffset) {
      .step_index = starting_step_index,
      .byte_offset = stream_offset(stream),
    }));
  }

  // An open bracket is the start of an alternation.
  if (stream->next == '[') {
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // Parse each branch, and add a placeholder step in between the branches.
    Array(uint32_t) branch_step_indices = array_new();
    CaptureQuantifiers branch_capture_quantifiers = capture_quantifiers_new();
    for (;;) {
      uint32_t start_index = self->steps.size;
      TSQueryError e = ts_query__parse_pattern(
        self,
        stream,
        depth,
        is_immediate,
        &branch_capture_quantifiers
      );

      if (e == PARENT_DONE) {
        if (stream->next == ']' && branch_step_indices.size > 0) {
          stream_advance(stream);
          break;
        }
        e = TSQueryErrorSyntax;
      }
      if (e) {
        capture_quantifiers_delete(&branch_capture_quantifiers);
        array_delete(&branch_step_indices);
        return e;
      }

      if(start_index == starting_step_index) {
        capture_quantifiers_replace(capture_quantifiers, &branch_capture_quantifiers);
      } else {
        capture_quantifiers_join_all(capture_quantifiers, &branch_capture_quantifiers);
      }

      array_push(&branch_step_indices, start_index);
      array_push(&self->steps, query_step__new(0, depth, false));
      capture_quantifiers_clear(&branch_capture_quantifiers);
    }
    (void)array_pop(&self->steps);

    // For all of the branches except for the last one, add the subsequent branch as an
    // alternative, and link the end of the branch to the current end of the steps.
    for (unsigned i = 0; i < branch_step_indices.size - 1; i++) {
      uint32_t step_index = branch_step_indices.contents[i];
      uint32_t next_step_index = branch_step_indices.contents[i + 1];
      QueryStep *start_step = &self->steps.contents[step_index];
      QueryStep *end_step = &self->steps.contents[next_step_index - 1];
      start_step->alternative_index = next_step_index;
      end_step->alternative_index = self->steps.size;
      end_step->is_dead_end = true;
    }

    capture_quantifiers_delete(&branch_capture_quantifiers);
    array_delete(&branch_step_indices);
  }

  // An open parenthesis can be the start of three possible constructs:
  // * A grouped sequence
  // * A predicate
  // * A named node
  else if (stream->next == '(') {
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // If this parenthesis is followed by a node, then it represents a grouped sequence.
    if (stream->next == '(' || stream->next == '"' || stream->next == '[') {
      bool child_is_immediate = false;
      CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new();
      for (;;) {
        if (stream->next == '.') {
          child_is_immediate = true;
          stream_advance(stream);
          stream_skip_whitespace(stream);
        }
        TSQueryError e = ts_query__parse_pattern(
          self,
          stream,
          depth,
          child_is_immediate,
          &child_capture_quantifiers
        );
        if (e == PARENT_DONE) {
          if (stream->next == ')') {
            stream_advance(stream);
            break;
          }
          e = TSQueryErrorSyntax;
        }
        if (e) {
          capture_quantifiers_delete(&child_capture_quantifiers);
          return e;
        }

        capture_quantifiers_add_all(capture_quantifiers, &child_capture_quantifiers);

        child_is_immediate = false;
        capture_quantifiers_clear(&child_capture_quantifiers);
      }
      capture_quantifiers_delete(&child_capture_quantifiers);
    }

    // A dot/pound character indicates the start of a predicate.
    else if (stream->next == '.' || stream->next == '#') {
      stream_advance(stream);
      return ts_query__parse_predicate(self, stream);
    }

    // Otherwise, this parenthesis is the start of a named node.
    else {
      TSSymbol symbol;

      // Parse a normal node name
      if (stream_is_ident_start(stream)) {
        const char *node_name = stream->input;
        stream_scan_identifier(stream);
        uint32_t length = stream->input - node_name;

        // TODO - remove.
        // For temporary backward compatibility, handle predicates without the leading '#' sign.
        if (length > 0 && (node_name[length - 1] == '!' || node_name[length - 1] == '?')) {
          stream_reset(stream, node_name);
          return ts_query__parse_predicate(self, stream);
        }

        // Parse the wildcard symbol
        else if (length == 1 && node_name[0] == '_') {
          symbol = WILDCARD_SYMBOL;
        }

        else {
          symbol = ts_language_symbol_for_name(
            self->language,
            node_name,
            length,
            true
          );
          if (!symbol) {
            stream_reset(stream, node_name);
            return TSQueryErrorNodeType;
          }
        }
      } else {
        return TSQueryErrorSyntax;
      }

      // Add a step for the node.
      array_push(&self->steps, query_step__new(symbol, depth, is_immediate));
      QueryStep *step = array_back(&self->steps);
      if (ts_language_symbol_metadata(self->language, symbol).supertype) {
        step->supertype_symbol = step->symbol;
        step->symbol = WILDCARD_SYMBOL;
      }
      if (symbol == WILDCARD_SYMBOL) {
        step->is_named = true;
      }

      stream_skip_whitespace(stream);

      if (stream->next == '/') {
        stream_advance(stream);
        if (!stream_is_ident_start(stream)) {
          return TSQueryErrorSyntax;
        }

        const char *node_name = stream->input;
        stream_scan_identifier(stream);
        uint32_t length = stream->input - node_name;

        step->symbol = ts_language_symbol_for_name(
          self->language,
          node_name,
          length,
          true
        );
        if (!step->symbol) {
          stream_reset(stream, node_name);
          return TSQueryErrorNodeType;
        }

        stream_skip_whitespace(stream);
      }

      // Parse the child patterns
      bool child_is_immediate = false;
      uint16_t last_child_step_index = 0;
      uint16_t negated_field_count = 0;
      TSFieldId negated_field_ids[MAX_NEGATED_FIELD_COUNT];
      CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new();
      for (;;) {
        // Parse a negated field assertion
        if (stream->next == '!') {
          stream_advance(stream);
          stream_skip_whitespace(stream);
          if (!stream_is_ident_start(stream)) {
            capture_quantifiers_delete(&child_capture_quantifiers);
            return TSQueryErrorSyntax;
          }
          const char *field_name = stream->input;
          stream_scan_identifier(stream);
          uint32_t length = stream->input - field_name;
          stream_skip_whitespace(stream);

          TSFieldId field_id = ts_language_field_id_for_name(
            self->language,
            field_name,
            length
          );
          if (!field_id) {
            stream->input = field_name;
            capture_quantifiers_delete(&child_capture_quantifiers);
            return TSQueryErrorField;
          }

          // Keep the field ids sorted.
          if (negated_field_count < MAX_NEGATED_FIELD_COUNT) {
            negated_field_ids[negated_field_count] = field_id;
            negated_field_count++;
          }

          continue;
        }

        // Parse a sibling anchor
        if (stream->next == '.') {
          child_is_immediate = true;
          stream_advance(stream);
          stream_skip_whitespace(stream);
        }

        uint16_t step_index = self->steps.size;
        TSQueryError e = ts_query__parse_pattern(
          self,
          stream,
          depth + 1,
          child_is_immediate,
          &child_capture_quantifiers
        );
        if (e == PARENT_DONE) {
          if (stream->next == ')') {
            if (child_is_immediate) {
              if (last_child_step_index == 0) {
                capture_quantifiers_delete(&child_capture_quantifiers);
                return TSQueryErrorSyntax;
              }
              self->steps.contents[last_child_step_index].is_last_child = true;
            }

            if (negated_field_count) {
              ts_query__add_negated_fields(
                self,
                starting_step_index,
                negated_field_ids,
                negated_field_count
              );
            }

            stream_advance(stream);
            break;
          }
          e = TSQueryErrorSyntax;
        }
        if (e) {
          capture_quantifiers_delete(&child_capture_quantifiers);
          return e;
        }

        capture_quantifiers_add_all(capture_quantifiers, &child_capture_quantifiers);

        last_child_step_index = step_index;
        child_is_immediate = false;
        capture_quantifiers_clear(&child_capture_quantifiers);
      }
      capture_quantifiers_delete(&child_capture_quantifiers);
    }
  }

  // Parse a wildcard pattern
  else if (stream->next == '_') {
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // Add a step that matches any kind of node
    array_push(&self->steps, query_step__new(WILDCARD_SYMBOL, depth, is_immediate));
  }

  // Parse a double-quoted anonymous leaf node expression
  else if (stream->next == '"') {
    const char *string_start = stream->input;
    TSQueryError e = ts_query__parse_string_literal(self, stream);
    if (e) return e;

    // Add a step for the node
    TSSymbol symbol = ts_language_symbol_for_name(
      self->language,
      self->string_buffer.contents,
      self->string_buffer.size,
      false
    );
    if (!symbol) {
      stream_reset(stream, string_start + 1);
      return TSQueryErrorNodeType;
    }
    array_push(&self->steps, query_step__new(symbol, depth, is_immediate));
  }

  // Parse a field-prefixed pattern
  else if (stream_is_ident_start(stream)) {
    // Parse the field name
    const char *field_name = stream->input;
    stream_scan_identifier(stream);
    uint32_t length = stream->input - field_name;
    stream_skip_whitespace(stream);

    if (stream->next != ':') {
      stream_reset(stream, field_name);
      return TSQueryErrorSyntax;
    }
    stream_advance(stream);
    stream_skip_whitespace(stream);

    // Parse the pattern
    CaptureQuantifiers field_capture_quantifiers = capture_quantifiers_new();
    TSQueryError e = ts_query__parse_pattern(
      self,
      stream,
      depth,
      is_immediate,
      &field_capture_quantifiers
    );
    if (e) {
      capture_quantifiers_delete(&field_capture_quantifiers);
      if (e == PARENT_DONE) e = TSQueryErrorSyntax;
      return e;
    }

    // Add the field name to the first step of the pattern
    TSFieldId field_id = ts_language_field_id_for_name(
      self->language,
      field_name,
      length
    );
    if (!field_id) {
      stream->input = field_name;
      return TSQueryErrorField;
    }

    uint32_t step_index = starting_step_index;
    QueryStep *step = &self->steps.contents[step_index];
    for (;;) {
      step->field = field_id;
      if (
        step->alternative_index != NONE &&
        step->alternative_index > step_index &&
        step->alternative_index < self->steps.size
      ) {
        step_index = step->alternative_index;
        step = &self->steps.contents[step_index];
      } else {
        break;
      }
    }

    capture_quantifiers_add_all(capture_quantifiers, &field_capture_quantifiers);
    capture_quantifiers_delete(&field_capture_quantifiers);
  }

  else {
    return TSQueryErrorSyntax;
  }

  stream_skip_whitespace(stream);

  // Parse suffixes modifiers for this pattern
  TSQuantifier quantifier = TSQuantifierOne;
  for (;;) {
    // Parse the one-or-more operator.
    if (stream->next == '+') {
      quantifier = quantifier_join(TSQuantifierOneOrMore, quantifier);

      stream_advance(stream);
      stream_skip_whitespace(stream);

      QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false);
      repeat_step.alternative_index = starting_step_index;
      repeat_step.is_pass_through = true;
      repeat_step.alternative_is_immediate = true;
      array_push(&self->steps, repeat_step);
    }

    // Parse the zero-or-more repetition operator.
    else if (stream->next == '*') {
      quantifier = quantifier_join(TSQuantifierZeroOrMore, quantifier);

      stream_advance(stream);
      stream_skip_whitespace(stream);

      QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false);
      repeat_step.alternative_index = starting_step_index;
      repeat_step.is_pass_through = true;
      repeat_step.alternative_is_immediate = true;
      array_push(&self->steps, repeat_step);

      QueryStep *step = &self->steps.contents[starting_step_index];
      while (step->alternative_index != NONE) {
        step = &self->steps.contents[step->alternative_index];
      }
      step->alternative_index = self->steps.size;
    }

    // Parse the optional operator.
    else if (stream->next == '?') {
      quantifier = quantifier_join(TSQuantifierZeroOrOne, quantifier);

      stream_advance(stream);
      stream_skip_whitespace(stream);

      QueryStep *step = &self->steps.contents[starting_step_index];
      while (step->alternative_index != NONE) {
        step = &self->steps.contents[step->alternative_index];
      }
      step->alternative_index = self->steps.size;
    }

    // Parse an '@'-prefixed capture pattern
    else if (stream->next == '@') {
      stream_advance(stream);
      if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax;
      const char *capture_name = stream->input;
      stream_scan_identifier(stream);
      uint32_t length = stream->input - capture_name;
      stream_skip_whitespace(stream);

      // Add the capture id to the first step of the pattern
      uint16_t capture_id = symbol_table_insert_name(
        &self->captures,
        capture_name,
        length
      );

      // Add the capture quantifier
      capture_quantifiers_add_for_id(capture_quantifiers, capture_id, TSQuantifierOne);

      uint32_t step_index = starting_step_index;
      for (;;) {
        QueryStep *step = &self->steps.contents[step_index];
        query_step__add_capture(step, capture_id);
        if (
          step->alternative_index != NONE &&
          step->alternative_index > step_index &&
          step->alternative_index < self->steps.size
        ) {
          step_index = step->alternative_index;
          step = &self->steps.contents[step_index];
        } else {
          break;
        }
      }
    }

    // No more suffix modifiers
    else {
      break;
    }
  }

  capture_quantifiers_mul(capture_quantifiers, quantifier);

  return 0;
}

TSQuery *ts_query_new(
  const TSLanguage *language,
  const char *source,
  uint32_t source_len,
  uint32_t *error_offset,
  TSQueryError *error_type
) {
  if (
    !language ||
    language->version > TREE_SITTER_LANGUAGE_VERSION ||
    language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION
  ) {
    *error_type = TSQueryErrorLanguage;
    return NULL;
  }

  TSQuery *self = ts_malloc(sizeof(TSQuery));
  *self = (TSQuery) {
    .steps = array_new(),
    .pattern_map = array_new(),
    .captures = symbol_table_new(),
    .capture_quantifiers = array_new(),
    .predicate_values = symbol_table_new(),
    .predicate_steps = array_new(),
    .patterns = array_new(),
    .step_offsets = array_new(),
    .string_buffer = array_new(),
    .negated_fields = array_new(),
    .wildcard_root_pattern_count = 0,
    .language = language,
  };

  array_push(&self->negated_fields, 0);

  // Parse all of the S-expressions in the given string.
  Stream stream = stream_new(source, source_len);
  stream_skip_whitespace(&stream);
  while (stream.input < stream.end) {
    uint32_t pattern_index = self->patterns.size;
    uint32_t start_step_index = self->steps.size;
    uint32_t start_predicate_step_index = self->predicate_steps.size;
    array_push(&self->patterns, ((QueryPattern) {
      .steps = (Slice) {.offset = start_step_index},
      .predicate_steps = (Slice) {.offset = start_predicate_step_index},
      .start_byte = stream_offset(&stream),
    }));
    CaptureQuantifiers capture_quantifiers = capture_quantifiers_new();
    *error_type = ts_query__parse_pattern(self, &stream, 0, false, &capture_quantifiers);
    array_push(&self->steps, query_step__new(0, PATTERN_DONE_MARKER, false));

    QueryPattern *pattern = array_back(&self->patterns);
    pattern->steps.length = self->steps.size - start_step_index;
    pattern->predicate_steps.length = self->predicate_steps.size - start_predicate_step_index;

    // If any pattern could not be parsed, then report the error information
    // and terminate.
    if (*error_type) {
      if (*error_type == PARENT_DONE) *error_type = TSQueryErrorSyntax;
      *error_offset = stream_offset(&stream);
      capture_quantifiers_delete(&capture_quantifiers);
      ts_query_delete(self);
      return NULL;
    }

    // Maintain a list of capture quantifiers for each pattern
    array_push(&self->capture_quantifiers, capture_quantifiers);

    // Maintain a map that can look up patterns for a given root symbol.
    uint16_t wildcard_root_alternative_index = NONE;
    for (;;) {
      QueryStep *step = &self->steps.contents[start_step_index];

      // If a pattern has a wildcard at its root, but it has a non-wildcard child,
      // then optimize the matching process by skipping matching the wildcard.
      // Later, during the matching process, the query cursor will check that
      // there is a parent node, and capture it if necessary.
      if (step->symbol == WILDCARD_SYMBOL && step->depth == 0 && !step->field) {
        QueryStep *second_step = &self->steps.contents[start_step_index + 1];
        if (second_step->symbol != WILDCARD_SYMBOL && second_step->depth == 1) {
          wildcard_root_alternative_index = step->alternative_index;
          start_step_index += 1;
          step = second_step;
        }
      }

      // Determine whether the pattern has a single root node. This affects
      // decisions about whether or not to start matching the pattern when
      // a query cursor has a range restriction.
      bool is_rooted = true;
      uint32_t start_depth = step->depth;
      for (uint32_t step_index = start_step_index + 1; step_index < self->steps.size; step_index++) {
        QueryStep *step = &self->steps.contents[step_index];
        if (step->depth == start_depth) {
          is_rooted = false;
          break;
        }
      }

      ts_query__pattern_map_insert(self, step->symbol, (PatternEntry) {
        .step_index = start_step_index,
        .pattern_index = pattern_index,
        .is_rooted = is_rooted
      });
      if (step->symbol == WILDCARD_SYMBOL) {
        self->wildcard_root_pattern_count++;
      }

      // If there are alternatives or options at the root of the pattern,
      // then add multiple entries to the pattern map.
      if (step->alternative_index != NONE) {
        start_step_index = step->alternative_index;
        step->alternative_index = NONE;
      } else if (wildcard_root_alternative_index != NONE) {
        start_step_index = wildcard_root_alternative_index;
        wildcard_root_alternative_index = NONE;
      } else {
        break;
      }
    }
  }

  if (!ts_query__analyze_patterns(self, error_offset)) {
    *error_type = TSQueryErrorStructure;
    ts_query_delete(self);
    return NULL;
  }

  array_delete(&self->string_buffer);
  return self;
}

void ts_query_delete(TSQuery *self) {
  if (self) {
    array_delete(&self->steps);
    array_delete(&self->pattern_map);
    array_delete(&self->predicate_steps);
    array_delete(&self->patterns);
    array_delete(&self->step_offsets);
    array_delete(&self->string_buffer);
    array_delete(&self->negated_fields);
    symbol_table_delete(&self->captures);
    symbol_table_delete(&self->predicate_values);
    for (uint32_t index = 0; index < self->capture_quantifiers.size; index++) {
      CaptureQuantifiers *capture_quantifiers = array_get(&self->capture_quantifiers, index);
      capture_quantifiers_delete(capture_quantifiers);
    }
    array_delete(&self->capture_quantifiers);
    ts_free(self);
  }
}

uint32_t ts_query_pattern_count(const TSQuery *self) {
  return self->patterns.size;
}

uint32_t ts_query_capture_count(const TSQuery *self) {
  return self->captures.slices.size;
}

uint32_t ts_query_string_count(const TSQuery *self) {
  return self->predicate_values.slices.size;
}

const char *ts_query_capture_name_for_id(
  const TSQuery *self,
  uint32_t index,
  uint32_t *length
) {
  return symbol_table_name_for_id(&self->captures, index, length);
}

TSQuantifier ts_query_capture_quantifier_for_id(
  const TSQuery *self,
  uint32_t pattern_index,
  uint32_t capture_index
) {
  CaptureQuantifiers *capture_quantifiers = array_get(&self->capture_quantifiers, pattern_index);
  return capture_quantifier_for_id(capture_quantifiers, capture_index);
}

const char *ts_query_string_value_for_id(
  const TSQuery *self,
  uint32_t index,
  uint32_t *length
) {
  return symbol_table_name_for_id(&self->predicate_values, index, length);
}

const TSQueryPredicateStep *ts_query_predicates_for_pattern(
  const TSQuery *self,
  uint32_t pattern_index,
  uint32_t *step_count
) {
  Slice slice = self->patterns.contents[pattern_index].predicate_steps;
  *step_count = slice.length;
  if (self->predicate_steps.contents == NULL) {
    return NULL;
  }
  return &self->predicate_steps.contents[slice.offset];
}

uint32_t ts_query_start_byte_for_pattern(
  const TSQuery *self,
  uint32_t pattern_index
) {
  return self->patterns.contents[pattern_index].start_byte;
}

bool ts_query_is_pattern_guaranteed_at_step(
  const TSQuery *self,
  uint32_t byte_offset
) {
  uint32_t step_index = UINT32_MAX;
  for (unsigned i = 0; i < self->step_offsets.size; i++) {
    StepOffset *step_offset = &self->step_offsets.contents[i];
    if (step_offset->byte_offset > byte_offset) break;
    step_index = step_offset->step_index;
  }
  if (step_index < self->steps.size) {
    return self->steps.contents[step_index].root_pattern_guaranteed;
  } else {
    return false;
  }
}

bool ts_query__step_is_fallible(
  const TSQuery *self,
  uint16_t step_index
) {
  assert((uint32_t)step_index + 1 < self->steps.size);
  QueryStep *step = &self->steps.contents[step_index];
  QueryStep *next_step = &self->steps.contents[step_index + 1];
  return (
    next_step->depth != PATTERN_DONE_MARKER &&
    next_step->depth > step->depth &&
    !next_step->parent_pattern_guaranteed
  );
}

void ts_query_disable_capture(
  TSQuery *self,
  const char *name,
  uint32_t length
) {
  // Remove capture information for any pattern step that previously
  // captured with the given name.
  int id = symbol_table_id_for_name(&self->captures, name, length);
  if (id != -1) {
    for (unsigned i = 0; i < self->steps.size; i++) {
      QueryStep *step = &self->steps.contents[i];
      query_step__remove_capture(step, id);
    }
  }
}

void ts_query_disable_pattern(
  TSQuery *self,
  uint32_t pattern_index
) {
  // Remove the given pattern from the pattern map. Its steps will still
  // be in the `steps` array, but they will never be read.
  for (unsigned i = 0; i < self->pattern_map.size; i++) {
    PatternEntry *pattern = &self->pattern_map.contents[i];
    if (pattern->pattern_index == pattern_index) {
      array_erase(&self->pattern_map, i);
      i--;
    }
  }
}

/***************
 * QueryCursor
 ***************/

TSQueryCursor *ts_query_cursor_new(void) {
  TSQueryCursor *self = ts_malloc(sizeof(TSQueryCursor));
  *self = (TSQueryCursor) {
    .did_exceed_match_limit = false,
    .ascending = false,
    .halted = false,
    .states = array_new(),
    .finished_states = array_new(),
    .capture_list_pool = capture_list_pool_new(),
    .start_byte = 0,
    .end_byte = UINT32_MAX,
    .start_point = {0, 0},
    .end_point = POINT_MAX,
  };
  array_reserve(&self->states, 8);
  array_reserve(&self->finished_states, 8);
  return self;
}

void ts_query_cursor_delete(TSQueryCursor *self) {
  array_delete(&self->states);
  array_delete(&self->finished_states);
  ts_tree_cursor_delete(&self->cursor);
  capture_list_pool_delete(&self->capture_list_pool);
  ts_free(self);
}

bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self) {
  return self->did_exceed_match_limit;
}

uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self) {
  return self->capture_list_pool.max_capture_list_count;
}

void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit) {
  self->capture_list_pool.max_capture_list_count = limit;
}

void ts_query_cursor_exec(
  TSQueryCursor *self,
  const TSQuery *query,
  TSNode node
) {
  array_clear(&self->states);
  array_clear(&self->finished_states);
  ts_tree_cursor_reset(&self->cursor, node);
  capture_list_pool_reset(&self->capture_list_pool);
  self->next_state_id = 0;
  self->depth = 0;
  self->ascending = false;
  self->halted = false;
  self->query = query;
  self->did_exceed_match_limit = false;
}

void ts_query_cursor_set_byte_range(
  TSQueryCursor *self,
  uint32_t start_byte,
  uint32_t end_byte
) {
  if (end_byte == 0) {
    end_byte = UINT32_MAX;
  }
  self->start_byte = start_byte;
  self->end_byte = end_byte;
}

void ts_query_cursor_set_point_range(
  TSQueryCursor *self,
  TSPoint start_point,
  TSPoint end_point
) {
  if (end_point.row == 0 && end_point.column == 0) {
    end_point = POINT_MAX;
  }
  self->start_point = start_point;
  self->end_point = end_point;
}

// Search through all of the in-progress states, and find the captured
// node that occurs earliest in the document.
static bool ts_query_cursor__first_in_progress_capture(
  TSQueryCursor *self,
  uint32_t *state_index,
  uint32_t *byte_offset,
  uint32_t *pattern_index,
  bool *root_pattern_guaranteed
) {
  bool result = false;
  *state_index = UINT32_MAX;
  *byte_offset = UINT32_MAX;
  *pattern_index = UINT32_MAX;
  for (unsigned i = 0; i < self->states.size; i++) {
    QueryState *state = &self->states.contents[i];
    if (state->dead) continue;

    const CaptureList *captures = capture_list_pool_get(
      &self->capture_list_pool,
      state->capture_list_id
    );
    if (state->consumed_capture_count >= captures->size) {
      continue;
    }

    TSNode node = captures->contents[state->consumed_capture_count].node;
    if (
      ts_node_end_byte(node) <= self->start_byte ||
      point_lte(ts_node_end_point(node), self->start_point)
    ) {
      state->consumed_capture_count++;
      i--;
      continue;
    }

    uint32_t node_start_byte = ts_node_start_byte(node);
    if (
      !result ||
      node_start_byte < *byte_offset ||
      (node_start_byte == *byte_offset && state->pattern_index < *pattern_index)
    ) {
      QueryStep *step = &self->query->steps.contents[state->step_index];
      if (root_pattern_guaranteed) {
        *root_pattern_guaranteed = step->root_pattern_guaranteed;
      } else if (step->root_pattern_guaranteed) {
        continue;
      }

      result = true;
      *state_index = i;
      *byte_offset = node_start_byte;
      *pattern_index = state->pattern_index;
    }
  }
  return result;
}

// Determine which node is first in a depth-first traversal
int ts_query_cursor__compare_nodes(TSNode left, TSNode right) {
  if (left.id != right.id) {
    uint32_t left_start = ts_node_start_byte(left);
    uint32_t right_start = ts_node_start_byte(right);
    if (left_start < right_start) return -1;
    if (left_start > right_start) return 1;
    uint32_t left_node_count = ts_node_end_byte(left);
    uint32_t right_node_count = ts_node_end_byte(right);
    if (left_node_count > right_node_count) return -1;
    if (left_node_count < right_node_count) return 1;
  }
  return 0;
}

// Determine if either state contains a superset of the other state's captures.
void ts_query_cursor__compare_captures(
  TSQueryCursor *self,
  QueryState *left_state,
  QueryState *right_state,
  bool *left_contains_right,
  bool *right_contains_left
) {
  const CaptureList *left_captures = capture_list_pool_get(
    &self->capture_list_pool,
    left_state->capture_list_id
  );
  const CaptureList *right_captures = capture_list_pool_get(
    &self->capture_list_pool,
    right_state->capture_list_id
  );
  *left_contains_right = true;
  *right_contains_left = true;
  unsigned i = 0, j = 0;
  for (;;) {
    if (i < left_captures->size) {
      if (j < right_captures->size) {
        TSQueryCapture *left = &left_captures->contents[i];
        TSQueryCapture *right = &right_captures->contents[j];
        if (left->node.id == right->node.id && left->index == right->index) {
          i++;
          j++;
        } else {
          switch (ts_query_cursor__compare_nodes(left->node, right->node)) {
            case -1:
              *right_contains_left = false;
              i++;
              break;
            case 1:
              *left_contains_right = false;
              j++;
              break;
            default:
              *right_contains_left = false;
              *left_contains_right = false;
              i++;
              j++;
              break;
          }
        }
      } else {
        *right_contains_left = false;
        break;
      }
    } else {
      if (j < right_captures->size) {
        *left_contains_right = false;
      }
      break;
    }
  }
}

#ifdef DEBUG_EXECUTE_QUERY
#define LOG(...) fprintf(stderr, __VA_ARGS__)
#else
#define LOG(...)
#endif

static void ts_query_cursor__add_state(
  TSQueryCursor *self,
  const PatternEntry *pattern
) {
  QueryStep *step = &self->query->steps.contents[pattern->step_index];
  uint32_t start_depth = self->depth - step->depth;

  // Keep the states array in ascending order of start_depth and pattern_index,
  // so that it can be processed more efficiently elsewhere. Usually, there is
  // no work to do here because of two facts:
  // * States with lower start_depth are naturally added first due to the
  //   order in which nodes are visited.
  // * Earlier patterns are naturally added first because of the ordering of the
  //   pattern_map data structure that's used to initiate matches.
  //
  // This loop is only needed in cases where two conditions hold:
  // * A pattern consists of more than one sibling node, so that its states
  //   remain in progress after exiting the node that started the match.
  // * The first node in the pattern matches against multiple nodes at the
  //   same depth.
  //
  // An example of this is the pattern '((comment)* (function))'. If multiple
  // `comment` nodes appear in a row, then we may initiate a new state for this
  // pattern while another state for the same pattern is already in progress.
  // If there are multiple patterns like this in a query, then this loop will
  // need to execute in order to keep the states ordered by pattern_index.
  uint32_t index = self->states.size;
  while (index > 0) {
    QueryState *prev_state = &self->states.contents[index - 1];
    if (prev_state->start_depth < start_depth) break;
    if (prev_state->start_depth == start_depth) {
      // Avoid inserting an unnecessary duplicate state, which would be
      // immediately pruned by the longest-match criteria.
      if (
        prev_state->pattern_index == pattern->pattern_index &&
        prev_state->step_index == pattern->step_index
      ) return;
      if (prev_state->pattern_index <= pattern->pattern_index) break;
    }
    index--;
  }

  LOG(
    "  start state. pattern:%u, step:%u\n",
    pattern->pattern_index,
    pattern->step_index
  );
  array_insert(&self->states, index, ((QueryState) {
    .id = UINT32_MAX,
    .capture_list_id = NONE,
    .step_index = pattern->step_index,
    .pattern_index = pattern->pattern_index,
    .start_depth = start_depth,
    .consumed_capture_count = 0,
    .seeking_immediate_match = true,
    .has_in_progress_alternatives = false,
    .needs_parent = step->depth == 1,
    .dead = false,
  }));
}

// Acquire a capture list for this state. If there are no capture lists left in the
// pool, this will steal the capture list from another existing state, and mark that
// other state as 'dead'.
static CaptureList *ts_query_cursor__prepare_to_capture(
  TSQueryCursor *self,
  QueryState *state,
  unsigned state_index_to_preserve
) {
  if (state->capture_list_id == NONE) {
    state->capture_list_id = capture_list_pool_acquire(&self->capture_list_pool);

    // If there are no capture lists left in the pool, then terminate whichever
    // state has captured the earliest node in the document, and steal its
    // capture list.
    if (state->capture_list_id == NONE) {
      self->did_exceed_match_limit = true;
      uint32_t state_index, byte_offset, pattern_index;
      if (
        ts_query_cursor__first_in_progress_capture(
          self,
          &state_index,
          &byte_offset,
          &pattern_index,
          NULL
        ) &&
        state_index != state_index_to_preserve
      ) {
        LOG(
          "  abandon state. index:%u, pattern:%u, offset:%u.\n",
          state_index, pattern_index, byte_offset
        );
        QueryState *other_state = &self->states.contents[state_index];
        state->capture_list_id = other_state->capture_list_id;
        other_state->capture_list_id = NONE;
        other_state->dead = true;
        CaptureList *list = capture_list_pool_get_mut(
          &self->capture_list_pool,
          state->capture_list_id
        );
        array_clear(list);
        return list;
      } else {
        LOG("  ran out of capture lists");
        return NULL;
      }
    }
  }
  return capture_list_pool_get_mut(&self->capture_list_pool, state->capture_list_id);
}

static void ts_query_cursor__capture(
  TSQueryCursor *self,
  QueryState *state,
  QueryStep *step,
  TSNode node
) {
  if (state->dead) return;
  CaptureList *capture_list = ts_query_cursor__prepare_to_capture(self, state, UINT32_MAX);
  if (!capture_list) {
    state->dead = true;
    return;
  }

  for (unsigned j = 0; j < MAX_STEP_CAPTURE_COUNT; j++) {
    uint16_t capture_id = step->capture_ids[j];
    if (step->capture_ids[j] == NONE) break;
    array_push(capture_list, ((TSQueryCapture) { node, capture_id }));
    LOG(
      "  capture node. type:%s, pattern:%u, capture_id:%u, capture_count:%u\n",
      ts_node_type(node),
      state->pattern_index,
      capture_id,
      capture_list->size
    );
  }
}

// Duplicate the given state and insert the newly-created state immediately after
// the given state in the `states` array. Ensures that the given state reference is
// still valid, even if the states array is reallocated.
static QueryState *ts_query_cursor__copy_state(
  TSQueryCursor *self,
  QueryState **state_ref
) {
  const QueryState *state = *state_ref;
  uint32_t state_index = state - self->states.contents;
  QueryState copy = *state;
  copy.capture_list_id = NONE;

  // If the state has captures, copy its capture list.
  if (state->capture_list_id != NONE) {
    CaptureList *new_captures = ts_query_cursor__prepare_to_capture(self, &copy, state_index);
    if (!new_captures) return NULL;
    const CaptureList *old_captures = capture_list_pool_get(
      &self->capture_list_pool,
      state->capture_list_id
    );
    array_push_all(new_captures, old_captures);
  }

  array_insert(&self->states, state_index + 1, copy);
  *state_ref = &self->states.contents[state_index];
  return &self->states.contents[state_index + 1];
}

// Walk the tree, processing patterns until at least one pattern finishes,
// If one or more patterns finish, return `true` and store their states in the
// `finished_states` array. Multiple patterns can finish on the same node. If
// there are no more matches, return `false`.
static inline bool ts_query_cursor__advance(
  TSQueryCursor *self,
  bool stop_on_definite_step
) {
  bool did_match = false;
  for (;;) {
    if (self->halted) {
      while (self->states.size > 0) {
        QueryState state = array_pop(&self->states);
        capture_list_pool_release(
          &self->capture_list_pool,
          state.capture_list_id
        );
      }
    }

    if (did_match || self->halted) return did_match;

    // Exit the current node.
    if (self->ascending) {
      LOG(
        "leave node. depth:%u, type:%s\n",
        self->depth,
        ts_node_type(ts_tree_cursor_current_node(&self->cursor))
      );

      // Leave this node by stepping to its next sibling or to its parent.
      if (ts_tree_cursor_goto_next_sibling(&self->cursor)) {
        self->ascending = false;
      } else if (ts_tree_cursor_goto_parent(&self->cursor)) {
        self->depth--;
      } else {
        LOG("halt at root\n");
        self->halted = true;
      }

      // After leaving a node, remove any states that cannot make further progress.
      uint32_t deleted_count = 0;
      for (unsigned i = 0, n = self->states.size; i < n; i++) {
        QueryState *state = &self->states.contents[i];
        QueryStep *step = &self->query->steps.contents[state->step_index];

        // If a state completed its pattern inside of this node, but was deferred from finishing
        // in order to search for longer matches, mark it as finished.
        if (step->depth == PATTERN_DONE_MARKER) {
          if (state->start_depth > self->depth || self->halted) {
            LOG("  finish pattern %u\n", state->pattern_index);
            array_push(&self->finished_states, *state);
            did_match = true;
            deleted_count++;
            continue;
          }
        }

        // If a state needed to match something within this node, then remove that state
        // as it has failed to match.
        else if ((uint32_t)state->start_depth + (uint32_t)step->depth > self->depth) {
          LOG(
            "  failed to match. pattern:%u, step:%u\n",
            state->pattern_index,
            state->step_index
          );
          capture_list_pool_release(
            &self->capture_list_pool,
            state->capture_list_id
          );
          deleted_count++;
          continue;
        }

        if (deleted_count > 0) {
          self->states.contents[i - deleted_count] = *state;
        }
      }
      self->states.size -= deleted_count;
    }

    // Enter a new node.
    else {
      // Get the properties of the current node.
      TSNode node = ts_tree_cursor_current_node(&self->cursor);
      TSNode parent_node = ts_tree_cursor_parent_node(&self->cursor);
      TSSymbol symbol = ts_node_symbol(node);
      bool is_named = ts_node_is_named(node);
      bool has_later_siblings;
      bool has_later_named_siblings;
      bool can_have_later_siblings_with_this_field;
      TSFieldId field_id = 0;
      TSSymbol supertypes[8] = {0};
      unsigned supertype_count = 8;
      ts_tree_cursor_current_status(
        &self->cursor,
        &field_id,
        &has_later_siblings,
        &has_later_named_siblings,
        &can_have_later_siblings_with_this_field,
        supertypes,
        &supertype_count
      );
      LOG(
        "enter node. depth:%u, type:%s, field:%s, row:%u state_count:%u, finished_state_count:%u\n",
        self->depth,
        ts_node_type(node),
        ts_language_field_name_for_id(self->query->language, field_id),
        ts_node_start_point(node).row,
        self->states.size,
        self->finished_states.size
      );

      bool node_intersects_range = (
        ts_node_end_byte(node) > self->start_byte &&
        ts_node_start_byte(node) < self->end_byte &&
        point_gt(ts_node_end_point(node), self->start_point) &&
        point_lt(ts_node_start_point(node), self->end_point)
      );

      bool parent_intersects_range = ts_node_is_null(parent_node) || (
        ts_node_end_byte(parent_node) > self->start_byte &&
        ts_node_start_byte(parent_node) < self->end_byte &&
        point_gt(ts_node_end_point(parent_node), self->start_point) &&
        point_lt(ts_node_start_point(parent_node), self->end_point)
      );

        // Add new states for any patterns whose root node is a wildcard.
      for (unsigned i = 0; i < self->query->wildcard_root_pattern_count; i++) {
        PatternEntry *pattern = &self->query->pattern_map.contents[i];

        // If this node matches the first step of the pattern, then add a new
        // state at the start of this pattern.
        QueryStep *step = &self->query->steps.contents[pattern->step_index];
        if (
          (node_intersects_range || (!pattern->is_rooted && parent_intersects_range)) &&
          (!step->field || field_id == step->field) &&
          (!step->supertype_symbol || supertype_count > 0)
        ) {
          ts_query_cursor__add_state(self, pattern);
        }
      }

      // Add new states for any patterns whose root node matches this node.
      unsigned i;
      if (ts_query__pattern_map_search(self->query, symbol, &i)) {
        PatternEntry *pattern = &self->query->pattern_map.contents[i];

        QueryStep *step = &self->query->steps.contents[pattern->step_index];
        do {
          // If this node matches the first step of the pattern, then add a new
          // state at the start of this pattern.
          if (
            (node_intersects_range || (!pattern->is_rooted && parent_intersects_range)) &&
            (!step->field || field_id == step->field)
          ) {
            ts_query_cursor__add_state(self, pattern);
          }

          // Advance to the next pattern whose root node matches this node.
          i++;
          if (i == self->query->pattern_map.size) break;
          pattern = &self->query->pattern_map.contents[i];
          step = &self->query->steps.contents[pattern->step_index];
        } while (step->symbol == symbol);
      }

      // Update all of the in-progress states with current node.
      for (unsigned i = 0, copy_count = 0; i < self->states.size; i += 1 + copy_count) {
        QueryState *state = &self->states.contents[i];
        QueryStep *step = &self->query->steps.contents[state->step_index];
        state->has_in_progress_alternatives = false;
        copy_count = 0;

        // Check that the node matches all of the criteria for the next
        // step of the pattern.
        if ((uint32_t)state->start_depth + (uint32_t)step->depth != self->depth) continue;

        // Determine if this node matches this step of the pattern, and also
        // if this node can have later siblings that match this step of the
        // pattern.
        bool node_does_match = false;
        if (step->symbol == WILDCARD_SYMBOL) {
          node_does_match = is_named || !step->is_named;
        } else {
          node_does_match = symbol == step->symbol;
        }
        bool later_sibling_can_match = has_later_siblings;
        if ((step->is_immediate && is_named) || state->seeking_immediate_match) {
          later_sibling_can_match = false;
        }
        if (step->is_last_child && has_later_named_siblings) {
          node_does_match = false;
        }
        if (step->supertype_symbol) {
          bool has_supertype = false;
          for (unsigned j = 0; j < supertype_count; j++) {
            if (supertypes[j] == step->supertype_symbol) {
              has_supertype = true;
              break;
            }
          }
          if (!has_supertype) node_does_match = false;
        }
        if (step->field) {
          if (step->field == field_id) {
            if (!can_have_later_siblings_with_this_field) {
              later_sibling_can_match = false;
            }
          } else {
            node_does_match = false;
          }
        }

        if (step->negated_field_list_id) {
          TSFieldId *negated_field_ids = &self->query->negated_fields.contents[step->negated_field_list_id];
          for (;;) {
            TSFieldId negated_field_id = *negated_field_ids;
            if (negated_field_id) {
              negated_field_ids++;
              if (ts_node_child_by_field_id(node, negated_field_id).id) {
                node_does_match = false;
                break;
              }
            } else {
              break;
            }
          }
        }

        // Remove states immediately if it is ever clear that they cannot match.
        if (!node_does_match) {
          if (!later_sibling_can_match) {
            LOG(
              "  discard state. pattern:%u, step:%u\n",
              state->pattern_index,
              state->step_index
            );
            capture_list_pool_release(
              &self->capture_list_pool,
              state->capture_list_id
            );
            array_erase(&self->states, i);
            i--;
          }
          continue;
        }

        // Some patterns can match their root node in multiple ways, capturing different
        // children. If this pattern step could match later children within the same
        // parent, then this query state cannot simply be updated in place. It must be
        // split into two states: one that matches this node, and one which skips over
        // this node, to preserve the possibility of matching later siblings.
        if (later_sibling_can_match && (
          step->contains_captures ||
          ts_query__step_is_fallible(self->query, state->step_index)
        )) {
          if (ts_query_cursor__copy_state(self, &state)) {
            LOG(
              "  split state for capture. pattern:%u, step:%u\n",
              state->pattern_index,
              state->step_index
            );
            copy_count++;
          }
        }

        // If this pattern started with a wildcard, such that the pattern map
        // actually points to the *second* step of the pattern, then check
        // that the node has a parent, and capture the parent node if necessary.
        if (state->needs_parent) {
          TSNode parent = ts_tree_cursor_parent_node(&self->cursor);
          if (ts_node_is_null(parent)) {
            LOG("  missing parent node\n");
            state->dead = true;
          } else {
            state->needs_parent = false;
            QueryStep *skipped_wildcard_step = step;
            do {
              skipped_wildcard_step--;
            } while (
              skipped_wildcard_step->is_dead_end ||
              skipped_wildcard_step->is_pass_through ||
              skipped_wildcard_step->depth > 0
            );
            if (skipped_wildcard_step->capture_ids[0] != NONE) {
              LOG("  capture wildcard parent\n");
              ts_query_cursor__capture(
                self,
                state,
                skipped_wildcard_step,
                parent
              );
            }
          }
        }

        // If the current node is captured in this pattern, add it to the capture list.
        if (step->capture_ids[0] != NONE) {
          ts_query_cursor__capture(self, state, step, node);
        }

        if (state->dead) {
          array_erase(&self->states, i);
          i--;
          continue;
        }

        // Advance this state to the next step of its pattern.
        state->step_index++;
        state->seeking_immediate_match = false;
        LOG(
          "  advance state. pattern:%u, step:%u\n",
          state->pattern_index,
          state->step_index
        );

        QueryStep *next_step = &self->query->steps.contents[state->step_index];
        if (stop_on_definite_step && next_step->root_pattern_guaranteed) did_match = true;

        // If this state's next step has an alternative step, then copy the state in order
        // to pursue both alternatives. The alternative step itself may have an alternative,
        // so this is an interative process.
        unsigned end_index = i + 1;
        for (unsigned j = i; j < end_index; j++) {
          QueryState *state = &self->states.contents[j];
          QueryStep *next_step = &self->query->steps.contents[state->step_index];
          if (next_step->alternative_index != NONE) {
            // A "dead-end" step exists only to add a non-sequential jump into the step sequence,
            // via its alternative index. When a state reaches a dead-end step, it jumps straight
            // to the step's alternative.
            if (next_step->is_dead_end) {
              state->step_index = next_step->alternative_index;
              j--;
              continue;
            }

            // A "pass-through" step exists only to add a branch into the step sequence,
            // via its alternative_index. When a state reaches a pass-through step, it splits
            // in order to process the alternative step, and then it advances to the next step.
            if (next_step->is_pass_through) {
              state->step_index++;
              j--;
            }

            QueryState *copy = ts_query_cursor__copy_state(self, &state);
            if (copy) {
              LOG(
                "  split state for branch. pattern:%u, from_step:%u, to_step:%u, immediate:%d, capture_count: %u\n",
                copy->pattern_index,
                copy->step_index,
                next_step->alternative_index,
                next_step->alternative_is_immediate,
                capture_list_pool_get(&self->capture_list_pool, copy->capture_list_id)->size
              );
              end_index++;
              copy_count++;
              copy->step_index = next_step->alternative_index;
              if (next_step->alternative_is_immediate) {
                copy->seeking_immediate_match = true;
              }
            }
          }
        }
      }

      for (unsigned i = 0; i < self->states.size; i++) {
        QueryState *state = &self->states.contents[i];
        if (state->dead) {
          array_erase(&self->states, i);
          i--;
          continue;
        }

        // Enfore the longest-match criteria. When a query pattern contains optional or
        // repeated nodes, this is necessary to avoid multiple redundant states, where
        // one state has a strict subset of another state's captures.
        bool did_remove = false;
        for (unsigned j = i + 1; j < self->states.size; j++) {
          QueryState *other_state = &self->states.contents[j];

          // Query states are kept in ascending order of start_depth and pattern_index.
          // Since the longest-match criteria is only used for deduping matches of the same
          // pattern and root node, we only need to perform pairwise comparisons within a
          // small slice of the states array.
          if (
            other_state->start_depth != state->start_depth ||
            other_state->pattern_index != state->pattern_index
          ) break;

          bool left_contains_right, right_contains_left;
          ts_query_cursor__compare_captures(
            self,
            state,
            other_state,
            &left_contains_right,
            &right_contains_left
          );
          if (left_contains_right) {
            if (state->step_index == other_state->step_index) {
              LOG(
                "  drop shorter state. pattern: %u, step_index: %u\n",
                state->pattern_index,
                state->step_index
              );
              capture_list_pool_release(&self->capture_list_pool, other_state->capture_list_id);
              array_erase(&self->states, j);
              j--;
              continue;
            }
            other_state->has_in_progress_alternatives = true;
          }
          if (right_contains_left) {
            if (state->step_index == other_state->step_index) {
              LOG(
                "  drop shorter state. pattern: %u, step_index: %u\n",
                state->pattern_index,
                state->step_index
              );
              capture_list_pool_release(&self->capture_list_pool, state->capture_list_id);
              array_erase(&self->states, i);
              i--;
              did_remove = true;
              break;
            }
            state->has_in_progress_alternatives = true;
          }
        }

        // If the state is at the end of its pattern, remove it from the list
        // of in-progress states and add it to the list of finished states.
        if (!did_remove) {
          LOG(
            "  keep state. pattern: %u, start_depth: %u, step_index: %u, capture_count: %u\n",
            state->pattern_index,
            state->start_depth,
            state->step_index,
            capture_list_pool_get(&self->capture_list_pool, state->capture_list_id)->size
          );
          QueryStep *next_step = &self->query->steps.contents[state->step_index];
          if (next_step->depth == PATTERN_DONE_MARKER) {
            if (state->has_in_progress_alternatives) {
              LOG("  defer finishing pattern %u\n", state->pattern_index);
            } else {
              LOG("  finish pattern %u\n", state->pattern_index);
              array_push(&self->finished_states, *state);
              array_erase(&self->states, state - self->states.contents);
              did_match = true;
              i--;
            }
          }
        }
      }

      // When the current node ends prior to the desired start offset,
      // only descend for the purpose of continuing in-progress matches.
      bool should_descend = node_intersects_range;
      if (!should_descend) {
        for (unsigned i = 0; i < self->states.size; i++) {
          QueryState *state = &self->states.contents[i];;
          QueryStep *next_step = &self->query->steps.contents[state->step_index];
          if (
            next_step->depth != PATTERN_DONE_MARKER &&
            state->start_depth + next_step->depth > self->depth
          ) {
            should_descend = true;
            break;
          }
        }
      }

      if (!should_descend) {
        LOG(
          "  not descending. node end byte: %u, start byte: %u\n",
          ts_node_end_byte(node),
          self->start_byte
        );
      }

      if (should_descend && ts_tree_cursor_goto_first_child(&self->cursor)) {
        self->depth++;
      } else {
        self->ascending = true;
      }
    }
  }
}

bool ts_query_cursor_next_match(
  TSQueryCursor *self,
  TSQueryMatch *match
) {
  if (self->finished_states.size == 0) {
    if (!ts_query_cursor__advance(self, false)) {
      return false;
    }
  }

  QueryState *state = &self->finished_states.contents[0];
  if (state->id == UINT32_MAX) state->id = self->next_state_id++;
  match->id = state->id;
  match->pattern_index = state->pattern_index;
  const CaptureList *captures = capture_list_pool_get(
    &self->capture_list_pool,
    state->capture_list_id
  );
  match->captures = captures->contents;
  match->capture_count = captures->size;
  capture_list_pool_release(&self->capture_list_pool, state->capture_list_id);
  array_erase(&self->finished_states, 0);
  return true;
}

void ts_query_cursor_remove_match(
  TSQueryCursor *self,
  uint32_t match_id
) {
  for (unsigned i = 0; i < self->finished_states.size; i++) {
    const QueryState *state = &self->finished_states.contents[i];
    if (state->id == match_id) {
      capture_list_pool_release(
        &self->capture_list_pool,
        state->capture_list_id
      );
      array_erase(&self->finished_states, i);
      return;
    }
  }

  // Remove unfinished query states as well to prevent future
  // captures for a match being removed.
  for (unsigned i = 0; i < self->states.size; i++) {
    const QueryState *state = &self->states.contents[i];
    if (state->id == match_id) {
      capture_list_pool_release(
        &self->capture_list_pool,
        state->capture_list_id
      );
      array_erase(&self->states, i);
      return;
    }
  }
}

bool ts_query_cursor_next_capture(
  TSQueryCursor *self,
  TSQueryMatch *match,
  uint32_t *capture_index
) {
  // The goal here is to return captures in order, even though they may not
  // be discovered in order, because patterns can overlap. Search for matches
  // until there is a finished capture that is before any unfinished capture.
  for (;;) {
    // First, find the earliest capture in an unfinished match.
    uint32_t first_unfinished_capture_byte;
    uint32_t first_unfinished_pattern_index;
    uint32_t first_unfinished_state_index;
    bool first_unfinished_state_is_definite = false;
    ts_query_cursor__first_in_progress_capture(
      self,
      &first_unfinished_state_index,
      &first_unfinished_capture_byte,
      &first_unfinished_pattern_index,
      &first_unfinished_state_is_definite
    );

    // Then find the earliest capture in a finished match. It must occur
    // before the first capture in an *unfinished* match.
    QueryState *first_finished_state = NULL;
    uint32_t first_finished_capture_byte = first_unfinished_capture_byte;
    uint32_t first_finished_pattern_index = first_unfinished_pattern_index;
    for (unsigned i = 0; i < self->finished_states.size;) {
      QueryState *state = &self->finished_states.contents[i];
      const CaptureList *captures = capture_list_pool_get(
        &self->capture_list_pool,
        state->capture_list_id
      );

      // Remove states whose captures are all consumed.
      if (state->consumed_capture_count >= captures->size) {
        capture_list_pool_release(
          &self->capture_list_pool,
          state->capture_list_id
        );
        array_erase(&self->finished_states, i);
        continue;
      }

      // Skip captures that precede the cursor's start byte.
      TSNode node = captures->contents[state->consumed_capture_count].node;
      if (ts_node_end_byte(node) <= self->start_byte) {
        state->consumed_capture_count++;
        continue;
      }

      uint32_t node_start_byte = ts_node_start_byte(node);
      if (
        node_start_byte < first_finished_capture_byte ||
        (
          node_start_byte == first_finished_capture_byte &&
          state->pattern_index < first_finished_pattern_index
        )
      ) {
        first_finished_state = state;
        first_finished_capture_byte = node_start_byte;
        first_finished_pattern_index = state->pattern_index;
      }
      i++;
    }

    // If there is finished capture that is clearly before any unfinished
    // capture, then return its match, and its capture index. Internally
    // record the fact that the capture has been 'consumed'.
    QueryState *state;
    if (first_finished_state) {
      state = first_finished_state;
    } else if (first_unfinished_state_is_definite) {
      state = &self->states.contents[first_unfinished_state_index];
    } else {
      state = NULL;
    }

    if (state) {
      if (state->id == UINT32_MAX) state->id = self->next_state_id++;
      match->id = state->id;
      match->pattern_index = state->pattern_index;
      const CaptureList *captures = capture_list_pool_get(
        &self->capture_list_pool,
        state->capture_list_id
      );
      match->captures = captures->contents;
      match->capture_count = captures->size;
      *capture_index = state->consumed_capture_count;
      state->consumed_capture_count++;
      return true;
    }

    if (capture_list_pool_is_empty(&self->capture_list_pool)) {
      LOG(
        "  abandon state. index:%u, pattern:%u, offset:%u.\n",
        first_unfinished_state_index,
        first_unfinished_pattern_index,
        first_unfinished_capture_byte
      );
      capture_list_pool_release(
        &self->capture_list_pool,
        self->states.contents[first_unfinished_state_index].capture_list_id
      );
      array_erase(&self->states, first_unfinished_state_index);
    }

    // If there are no finished matches that are ready to be returned, then
    // continue finding more matches.
    if (
      !ts_query_cursor__advance(self, true) &&
      self->finished_states.size == 0
    ) return false;
  }
}

#undef LOG
Hints

Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://code.reversed.top/user/xaizek/zograscope

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@code.reversed.top/user/xaizek/zograscope

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a pull request:
... clone the repository ...
... make some changes and some commits ...
git push origin master