xaizek / gcc-plugins (License: GPLv3+) (since 2018-12-07)
Some GCC plugins (actually only one was uploaded so far, and its functionality is not unique).
<root> / inc-tree / tree.hpp (000c20d4c67d397ae8485dc45ad9f8f235a5de17) (86KiB) (mode 100644) [raw]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
//  STL-like templated tree class.
//
// Copyright (C) 2001-2014 Kasper Peeters <kasper@phi-sci.com>
// Distributed under the GNU General Public License version 3.
//
// Special permission to use tree.hh under the conditions of a
// different license can be requested from the author.

/** \mainpage tree.hh
    \author   Kasper Peeters
    \version  3.1
    \date     06-May-2015
    \see      http://tree.phi-sci.com/
    \see      http://tree.phi-sci.com/ChangeLog

   The tree.hh library for C++ provides an STL-like container class
   for n-ary trees, templated over the data stored at the
   nodes. Various types of iterators are provided (post-order,
   pre-order, and others). Where possible the access methods are
   compatible with the STL or alternative algorithms are
   available.
*/


#ifndef treexx_tree_hh_
#define treexx_tree_hh_

#include <cassert>
#include <memory>
#include <stdexcept>
#include <iterator>
#include <set>
#include <queue>
#include <algorithm>
#include <cstddef>

namespace treexx {

/// A node in the tree, combining links to other nodes as well as the actual data.
template<class T>
class tree_node_ { // size: 5*4=20 bytes (on 32 bit arch), can be reduced by 8.
	public:
		tree_node_();
		tree_node_(const T&);

		tree_node_<T> *parent;
	   tree_node_<T> *first_child, *last_child;
		tree_node_<T> *prev_sibling, *next_sibling;
		T data;
}; // __attribute__((packed));

template<class T>
tree_node_<T>::tree_node_()
	: parent(0), first_child(0), last_child(0), prev_sibling(0), next_sibling(0)
	{
	}

template<class T>
tree_node_<T>::tree_node_(const T& val)
	: parent(0), first_child(0), last_child(0), prev_sibling(0), next_sibling(0), data(val)
	{
	}

template <class T, class tree_node_allocator = ::std::allocator<tree_node_<T> > >
class tree {
	protected:
		typedef tree_node_<T> tree_node;
	public:
		/// Value of the data stored at a node.
		typedef T value_type;

		class iterator_base;
		class pre_order_iterator;
		class post_order_iterator;
		class sibling_iterator;
      class leaf_iterator;

		tree();                                         // empty constructor
		tree(const T&);                                 // constructor setting given element as head
		tree(const iterator_base&);
		tree(const tree<T, tree_node_allocator>&);      // copy constructor
		tree(tree<T, tree_node_allocator>&&);           // move constructor
		~tree();
		tree<T,tree_node_allocator>& operator=(const tree<T, tree_node_allocator>&);   // copy assignment
		tree<T,tree_node_allocator>& operator=(tree<T, tree_node_allocator>&&);        // move assignment

      /// Base class for iterators, only pointers stored, no traversal logic.
#ifdef __SGI_STL_PORT
		class iterator_base : public stlport::bidirectional_iterator<T, ptrdiff_t> {
#else
		class iterator_base {
#endif
			public:
				typedef T                               value_type;
				typedef T*                              pointer;
				typedef T&                              reference;
				typedef size_t                          size_type;
				typedef ptrdiff_t                       difference_type;
				typedef ::std::bidirectional_iterator_tag iterator_category;

				iterator_base();
				iterator_base(tree_node *);

				T&             operator*() const;
				T*             operator->() const;

            /// When called, the next increment/decrement skips children of this node.
				void         skip_children();
				void         skip_children(bool skip);
				/// Number of children of the node pointed to by the iterator.
				unsigned int number_of_children() const;

				sibling_iterator begin() const;
				sibling_iterator end() const;

				tree_node *node;
			protected:
				bool skip_current_children_;
		};

		/// Depth-first iterator, first accessing the node, then its children.
		class pre_order_iterator : public iterator_base {
			public:
				pre_order_iterator();
				pre_order_iterator(tree_node *);
				pre_order_iterator(const iterator_base&);
				pre_order_iterator(const sibling_iterator&);

				bool    operator==(const pre_order_iterator&) const;
				bool    operator!=(const pre_order_iterator&) const;
				pre_order_iterator&  operator++();
			   pre_order_iterator&  operator--();
				pre_order_iterator   operator++(int);
				pre_order_iterator   operator--(int);
				pre_order_iterator&  operator+=(unsigned int);
				pre_order_iterator&  operator-=(unsigned int);

				pre_order_iterator&  next_skip_children();
		};

		/// Depth-first iterator, first accessing the children, then the node itself.
		class post_order_iterator : public iterator_base {
			public:
				post_order_iterator();
				post_order_iterator(tree_node *);
				post_order_iterator(const iterator_base&);
				post_order_iterator(const sibling_iterator&);

				bool    operator==(const post_order_iterator&) const;
				bool    operator!=(const post_order_iterator&) const;
				post_order_iterator&  operator++();
			   post_order_iterator&  operator--();
				post_order_iterator   operator++(int);
				post_order_iterator   operator--(int);
				post_order_iterator&  operator+=(unsigned int);
				post_order_iterator&  operator-=(unsigned int);

				/// Set iterator to the first child as deep as possible down the tree.
				void descend_all();
		};

		/// Breadth-first iterator, using a queue
		class breadth_first_queued_iterator : public iterator_base {
			public:
				breadth_first_queued_iterator();
				breadth_first_queued_iterator(tree_node *);
				breadth_first_queued_iterator(const iterator_base&);

				bool    operator==(const breadth_first_queued_iterator&) const;
				bool    operator!=(const breadth_first_queued_iterator&) const;
				breadth_first_queued_iterator&  operator++();
				breadth_first_queued_iterator   operator++(int);
				breadth_first_queued_iterator&  operator+=(unsigned int);

			private:
				::std::queue<tree_node *> traversal_queue;
		};

		/// The default iterator types throughout the tree class.
		typedef pre_order_iterator            iterator;
		typedef breadth_first_queued_iterator breadth_first_iterator;

		/// Iterator which traverses only the nodes at a given depth from the root.
		class fixed_depth_iterator : public iterator_base {
			public:
				fixed_depth_iterator();
				fixed_depth_iterator(tree_node *);
				fixed_depth_iterator(const iterator_base&);
				fixed_depth_iterator(const sibling_iterator&);
				fixed_depth_iterator(const fixed_depth_iterator&);

				bool    operator==(const fixed_depth_iterator&) const;
				bool    operator!=(const fixed_depth_iterator&) const;
				fixed_depth_iterator&  operator++();
			   fixed_depth_iterator&  operator--();
				fixed_depth_iterator   operator++(int);
				fixed_depth_iterator   operator--(int);
				fixed_depth_iterator&  operator+=(unsigned int);
				fixed_depth_iterator&  operator-=(unsigned int);

				tree_node *top_node;
		};

		/// Iterator which traverses only the nodes which are siblings of each other.
		class sibling_iterator : public iterator_base {
			public:
				sibling_iterator();
				sibling_iterator(tree_node *);
				sibling_iterator(const sibling_iterator&);
				sibling_iterator(const iterator_base&);

				bool    operator==(const sibling_iterator&) const;
				bool    operator!=(const sibling_iterator&) const;
				sibling_iterator&  operator++();
				sibling_iterator&  operator--();
				sibling_iterator   operator++(int);
				sibling_iterator   operator--(int);
				sibling_iterator&  operator+=(unsigned int);
				sibling_iterator&  operator-=(unsigned int);

				tree_node *range_first() const;
				tree_node *range_last() const;
				tree_node *parent_;
			private:
				void set_parent_();
		};

      /// Iterator which traverses only the leaves.
      class leaf_iterator : public iterator_base {
         public:
            leaf_iterator();
            leaf_iterator(tree_node *, tree_node *top=0);
            leaf_iterator(const sibling_iterator&);
            leaf_iterator(const iterator_base&);

            bool    operator==(const leaf_iterator&) const;
            bool    operator!=(const leaf_iterator&) const;
            leaf_iterator&  operator++();
            leaf_iterator&  operator--();
            leaf_iterator   operator++(int);
            leaf_iterator   operator--(int);
            leaf_iterator&  operator+=(unsigned int);
            leaf_iterator&  operator-=(unsigned int);
			private:
				tree_node *top_node;
      };

		/// Return iterator to the beginning of the tree.
		inline pre_order_iterator   begin() const;
		/// Return iterator to the end of the tree.
		inline pre_order_iterator   end() const;
		/// Return post-order iterator to the beginning of the tree.
		post_order_iterator  begin_post() const;
		/// Return post-order end iterator of the tree.
		post_order_iterator  end_post() const;
		/// Return fixed-depth iterator to the first node at a given depth from the given iterator.
		fixed_depth_iterator begin_fixed(const iterator_base&, unsigned int) const;
		/// Return fixed-depth end iterator.
		fixed_depth_iterator end_fixed(const iterator_base&, unsigned int) const;
		/// Return breadth-first iterator to the first node at a given depth.
		breadth_first_queued_iterator begin_breadth_first() const;
		/// Return breadth-first end iterator.
		breadth_first_queued_iterator end_breadth_first() const;
		/// Return sibling iterator to the first child of given node.
		sibling_iterator     begin(const iterator_base&) const;
		/// Return sibling end iterator for children of given node.
		sibling_iterator     end(const iterator_base&) const;
      /// Return leaf iterator to the first leaf of the tree.
      leaf_iterator   begin_leaf() const;
      /// Return leaf end iterator for entire tree.
      leaf_iterator   end_leaf() const;
      /// Return leaf iterator to the first leaf of the subtree at the given node.
      leaf_iterator   begin_leaf(const iterator_base& top) const;
      /// Return leaf end iterator for the subtree at the given node.
      leaf_iterator   end_leaf(const iterator_base& top) const;

		/// Return iterator to the parent of a node.
		template<typename	iter> static iter parent(iter);
		/// Return iterator to the previous sibling of a node.
		template<typename iter> static iter previous_sibling(iter);
		/// Return iterator to the next sibling of a node.
		template<typename iter> static iter next_sibling(iter);
		/// Return iterator to the next node at a given depth.
		template<typename iter> iter next_at_same_depth(iter) const;

		/// Erase all nodes of the tree.
		void     clear();
		/// Erase element at position pointed to by iterator, return incremented iterator.
		template<typename iter> iter erase(iter);
		/// Erase all children of the node pointed to by iterator.
		void     erase_children(const iterator_base&);

		/// Insert empty node as last/first child of node pointed to by position.
		template<typename iter> iter append_child(iter position);
		template<typename iter> iter prepend_child(iter position);
		/// Insert node as last/first child of node pointed to by position.
		template<typename iter> iter append_child(iter position, const T& x);
		template<typename iter> iter prepend_child(iter position, const T& x);
		/// Append the node (plus its children) at other_position as last/first child of position.
		template<typename iter> iter append_child(iter position, iter other_position);
		template<typename iter> iter prepend_child(iter position, iter other_position);
		/// Append the nodes in the from-to range (plus their children) as last/first children of position.
		template<typename iter> iter append_children(iter position, sibling_iterator from, sibling_iterator to);
		template<typename iter> iter prepend_children(iter position, sibling_iterator from, sibling_iterator to);

		/// Short-hand to insert topmost node in otherwise empty tree.
		pre_order_iterator set_head(const T& x);
		/// Insert node as previous sibling of node pointed to by position.
		template<typename iter> iter insert(iter position, const T& x);
		/// Specialisation of previous member.
		sibling_iterator insert(sibling_iterator position, const T& x);
		/// Insert node (with children) pointed to by subtree as previous sibling of node pointed to by position.
		/// Does not change the subtree itself (use move_in or move_in_below for that).
		template<typename iter> iter insert_subtree(iter position, const iterator_base& subtree);
		/// Insert node as next sibling of node pointed to by position.
		template<typename iter> iter insert_after(iter position, const T& x);
		/// Insert node (with children) pointed to by subtree as next sibling of node pointed to by position.
		template<typename iter> iter insert_subtree_after(iter position, const iterator_base& subtree);

		/// Replace node at 'position' with other node (keeping same children); 'position' becomes invalid.
		template<typename iter> iter replace(iter position, const T& x);
		/// Replace node at 'position' with subtree starting at 'from' (do not erase subtree at 'from'); see above.
		template<typename iter> iter replace(iter position, const iterator_base& from);
		/// Replace string of siblings (plus their children) with copy of a new string (with children); see above
		sibling_iterator replace(sibling_iterator orig_begin, sibling_iterator orig_end,
										 sibling_iterator new_begin,  sibling_iterator new_end);

		/// Move all children of node at 'position' to be siblings, returns position.
		template<typename iter> iter flatten(iter position);
		/// Move nodes in range to be children of 'position'.
		template<typename iter> iter reparent(iter position, sibling_iterator begin, sibling_iterator end);
		/// Move all child nodes of 'from' to be children of 'position'.
		template<typename iter> iter reparent(iter position, iter from);

		/// Replace node with a new node, making the old node a child of the new node.
		template<typename iter> iter wrap(iter position, const T& x);

		/// Move 'source' node (plus its children) to become the next sibling of 'target'.
		template<typename iter> iter move_after(iter target, iter source);
		/// Move 'source' node (plus its children) to become the previous sibling of 'target'.
      template<typename iter> iter move_before(iter target, iter source);
      sibling_iterator move_before(sibling_iterator target, sibling_iterator source);
		/// Move 'source' node (plus its children) to become the node at 'target' (erasing the node at 'target').
		template<typename iter> iter move_ontop(iter target, iter source);

		/// Extract the subtree starting at the indicated node, removing it from the original tree.
		tree                         move_out(iterator);
		/// Inverse of take_out: inserts the given tree as previous sibling of indicated node by a
		/// move operation, that is, the given tree becomes empty. Returns iterator to the top node.
		template<typename iter> iter move_in(iter, tree&);
		/// As above, but now make the tree a child of the indicated node.
		template<typename iter> iter move_in_below(iter, tree&);
		/// As above, but now make the tree the nth child of the indicated node (if possible).
		template<typename iter> iter move_in_as_nth_child(iter, size_t, tree&);

		/// Merge with other tree, creating new branches and leaves only if they are not already present.
		void     merge(sibling_iterator, sibling_iterator, sibling_iterator, sibling_iterator,
							bool duplicate_leaves=false);
		/// Sort (std::sort only moves values of nodes, this one moves children as well).
		void     sort(sibling_iterator from, sibling_iterator to, bool deep=false);
		template<class StrictWeakOrdering>
		void     sort(sibling_iterator from, sibling_iterator to, StrictWeakOrdering comp, bool deep=false);
		/// Compare two ranges of nodes (compares nodes as well as tree structure).
		template<typename iter>
		bool     equal(const iter& one, const iter& two, const iter& three) const;
		template<typename iter, class BinaryPredicate>
		bool     equal(const iter& one, const iter& two, const iter& three, BinaryPredicate) const;
		template<typename iter>
		bool     equal_subtree(const iter& one, const iter& two) const;
		template<typename iter, class BinaryPredicate>
		bool     equal_subtree(const iter& one, const iter& two, BinaryPredicate) const;
		/// Extract a new tree formed by the range of siblings plus all their children.
		tree     subtree(sibling_iterator from, sibling_iterator to) const;
		void     subtree(tree&, sibling_iterator from, sibling_iterator to) const;
		/// Exchange the node (plus subtree) with its sibling node (do nothing if no sibling present).
		void     swap(sibling_iterator it);
		/// Exchange two nodes (plus subtrees)
	   void     swap(iterator, iterator);

		/// Count the total number of nodes.
		size_t   size() const;
		/// Count the total number of nodes below the indicated node (plus one).
		size_t   size(const iterator_base&) const;
		/// Check if tree is empty.
		bool     empty() const;
		/// Compute the depth to the root or to a fixed other iterator.
		static int depth(const iterator_base&);
		static int depth(const iterator_base&, const iterator_base&);
		/// Determine the maximal depth of the tree. An empty tree has max_depth=-1.
		int      max_depth() const;
		/// Determine the maximal depth of the tree with top node at the given position.
		int      max_depth(const iterator_base&) const;
		/// Count the number of children of node at position.
		static unsigned int number_of_children(const iterator_base&);
		/// Count the number of siblings (left and right) of node at iterator. Total nodes at this level is +1.
		unsigned int number_of_siblings(const iterator_base&) const;
		/// Determine whether node at position is in the subtrees with root in the range.
		bool     is_in_subtree(const iterator_base& position, const iterator_base& begin,
									  const iterator_base& end) const;
		/// Determine whether the iterator is an 'end' iterator and thus not actually pointing to a node.
		bool     is_valid(const iterator_base&) const;
		/// Find the lowest common ancestor of two nodes, that is, the deepest node such that
		/// both nodes are descendants of it.
		iterator lowest_common_ancestor(const iterator_base&, const iterator_base &) const;

		/// Determine the index of a node in the range of siblings to which it belongs.
		unsigned int index(sibling_iterator it) const;
		/// Inverse of 'index': return the n-th child of the node at position.
		static sibling_iterator child(const iterator_base& position, unsigned int);
		/// Return iterator to the sibling indicated by index
		sibling_iterator sibling(const iterator_base& position, unsigned int);

		/// For debugging only: verify internal consistency by inspecting all pointers in the tree
		/// (which will also trigger a valgrind error in case something got corrupted).
		void debug_verify_consistency() const;

		/// Comparator class for iterators (compares pointer values; why doesn't this work automatically?)
		class iterator_base_less {
			public:
				bool operator()(const typename tree<T, tree_node_allocator>::iterator_base& one,
									 const typename tree<T, tree_node_allocator>::iterator_base& two) const
					{
					return one.node < two.node;
					}
		};
		tree_node *head, *feet;    // head/feet are always dummy; if an iterator points to them it is invalid
	private:
		tree_node_allocator alloc_;
		void head_initialise_();
		void copy_(const tree<T, tree_node_allocator>& other);

      /// Comparator class for two nodes of a tree (used for sorting and searching).
		template<class StrictWeakOrdering>
		class compare_nodes {
			public:
				compare_nodes(StrictWeakOrdering comp) : comp_(comp) {};

				bool operator()(const tree_node *a, const tree_node *b)
					{
					return comp_(a->data, b->data);
					}
			private:
				StrictWeakOrdering comp_;
		};
};

//template <class T, class tree_node_allocator>
//class iterator_base_less {
//	public:
//		bool operator()(const typename tree<T, tree_node_allocator>::iterator_base& one,
//						  const typename tree<T, tree_node_allocator>::iterator_base& two) const
//			{
//			txtout << "operatorclass<" << one.node < two.node << std::endl;
//			return one.node < two.node;
//			}
//};

// template <class T, class tree_node_allocator>
// bool operator<(const typename tree<T, tree_node_allocator>::iterator& one,
// 					const typename tree<T, tree_node_allocator>::iterator& two)
// 	{
// 	txtout << "operator< " << one.node < two.node << std::endl;
// 	if(one.node < two.node) return true;
// 	return false;
// 	}
//
// template <class T, class tree_node_allocator>
// bool operator==(const typename tree<T, tree_node_allocator>::iterator& one,
// 					const typename tree<T, tree_node_allocator>::iterator& two)
// 	{
// 	txtout << "operator== " << one.node == two.node << std::endl;
// 	if(one.node == two.node) return true;
// 	return false;
// 	}
//
// template <class T, class tree_node_allocator>
// bool operator>(const typename tree<T, tree_node_allocator>::iterator_base& one,
// 					const typename tree<T, tree_node_allocator>::iterator_base& two)
// 	{
// 	txtout << "operator> " << one.node < two.node << std::endl;
// 	if(one.node > two.node) return true;
// 	return false;
// 	}



// Tree

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree()
	{
	head_initialise_();
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(const T& x)
	{
	head_initialise_();
	set_head(x);
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(tree<T, tree_node_allocator>&& x)
	{
	head_initialise_();
	head->next_sibling=x.head->next_sibling;
	feet->prev_sibling=x.head->prev_sibling;
	x.head->next_sibling->prev_sibling=head;
	x.feet->prev_sibling->next_sibling=feet;
	x.head->next_sibling=x.feet;
	x.feet->prev_sibling=x.head;
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(const iterator_base& other)
	{
	head_initialise_();
	set_head((*other));
	replace(begin(), other);
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::~tree()
	{
	clear();
	alloc_.destroy(head);
	alloc_.destroy(feet);
	alloc_.deallocate(head,1);
	alloc_.deallocate(feet,1);
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::head_initialise_()
   {
   head = alloc_.allocate(1,0); // MSVC does not have default second argument
	feet = alloc_.allocate(1,0);
	alloc_.construct(head, tree_node_<T>());
	alloc_.construct(feet, tree_node_<T>());

   head->parent=0;
   head->first_child=0;
   head->last_child=0;
   head->prev_sibling=0; //head;
   head->next_sibling=feet; //head;

	feet->parent=0;
	feet->first_child=0;
	feet->last_child=0;
	feet->prev_sibling=head;
	feet->next_sibling=0;
   }

template <class T, class tree_node_allocator>
tree<T,tree_node_allocator>& tree<T, tree_node_allocator>::operator=(const tree<T, tree_node_allocator>& other)
	{
	if(this != &other)
		copy_(other);
	return *this;
	}

template <class T, class tree_node_allocator>
tree<T,tree_node_allocator>& tree<T, tree_node_allocator>::operator=(tree<T, tree_node_allocator>&& x)
	{
	if(this != &x) {
		head->next_sibling=x.head->next_sibling;
		feet->prev_sibling=x.head->prev_sibling;
		x.head->next_sibling->prev_sibling=head;
		x.feet->prev_sibling->next_sibling=feet;
		x.head->next_sibling=x.feet;
		x.feet->prev_sibling=x.head;
		}
	return *this;
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(const tree<T, tree_node_allocator>& other)
	{
	head_initialise_();
	copy_(other);
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::copy_(const tree<T, tree_node_allocator>& other)
	{
	clear();
	pre_order_iterator it=other.begin(), to=begin();
	while(it!=other.end()) {
		to=insert(to, (*it));
		it.skip_children();
		++it;
		}
	to=begin();
	it=other.begin();
	while(it!=other.end()) {
		to=replace(to, it);
		to.skip_children();
		it.skip_children();
		++to;
		++it;
		}
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::clear()
	{
	if(head)
		while(head->next_sibling!=feet)
			erase(pre_order_iterator(head->next_sibling));
	}

template<class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::erase_children(const iterator_base& it)
	{
//	std::cout << "erase_children " << it.node << std::endl;
	if(it.node==0) return;

	tree_node *cur=it.node->first_child;
	tree_node *prev=0;

	while(cur!=0) {
		prev=cur;
		cur=cur->next_sibling;
		erase_children(pre_order_iterator(prev));
//		kp::destructor(&prev->data);
		alloc_.destroy(prev);
		alloc_.deallocate(prev,1);
		}
	it.node->first_child=0;
	it.node->last_child=0;
//	std::cout << "exit" << std::endl;
	}

template<class T, class tree_node_allocator>
template<class iter>
iter tree<T, tree_node_allocator>::erase(iter it)
	{
	tree_node *cur=it.node;
	assert(cur!=head);
	iter ret=it;
	ret.skip_children();
	++ret;
	erase_children(it);
	if(cur->prev_sibling==0) {
		cur->parent->first_child=cur->next_sibling;
		}
	else {
		cur->prev_sibling->next_sibling=cur->next_sibling;
		}
	if(cur->next_sibling==0) {
		cur->parent->last_child=cur->prev_sibling;
		}
	else {
		cur->next_sibling->prev_sibling=cur->prev_sibling;
		}

//	kp::destructor(&cur->data);
	alloc_.destroy(cur);
   alloc_.deallocate(cur,1);
	return ret;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::begin() const
	{
	return pre_order_iterator(head->next_sibling);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::end() const
	{
	return pre_order_iterator(feet);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::breadth_first_queued_iterator tree<T, tree_node_allocator>::begin_breadth_first() const
	{
	return breadth_first_queued_iterator(head->next_sibling);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::breadth_first_queued_iterator tree<T, tree_node_allocator>::end_breadth_first() const
	{
	return breadth_first_queued_iterator();
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::begin_post() const
	{
	tree_node *tmp=head->next_sibling;
	if(tmp!=feet) {
		while(tmp->first_child)
			tmp=tmp->first_child;
		}
	return post_order_iterator(tmp);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::end_post() const
	{
	return post_order_iterator(feet);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::begin_fixed(const iterator_base& pos, unsigned int dp) const
	{
	typename tree<T, tree_node_allocator>::fixed_depth_iterator ret;
	ret.top_node=pos.node;

	tree_node *tmp=pos.node;
	unsigned int curdepth=0;
	while(curdepth<dp) { // go down one level
		while(tmp->first_child==0) {
			if(tmp->next_sibling==0) {
				// try to walk up and then right again
				do {
					if(tmp==ret.top_node)
					   throw ::std::range_error("tree: begin_fixed out of range");
					tmp=tmp->parent;
               if(tmp==0)
					   throw ::std::range_error("tree: begin_fixed out of range");
               --curdepth;
				   } while(tmp->next_sibling==0);
				}
			tmp=tmp->next_sibling;
			}
		tmp=tmp->first_child;
		++curdepth;
		}

	ret.node=tmp;
	return ret;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::end_fixed(const iterator_base& pos, unsigned int dp) const
	{
	assert(1==0); // FIXME: not correct yet: use is_valid() as a temporary workaround
	tree_node *tmp=pos.node;
	unsigned int curdepth=1;
	while(curdepth<dp) { // go down one level
		while(tmp->first_child==0) {
			tmp=tmp->next_sibling;
			if(tmp==0)
				throw ::std::range_error("tree: end_fixed out of range");
			}
		tmp=tmp->first_child;
		++curdepth;
		}
	return tmp;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::begin(const iterator_base& pos) const
	{
	assert(pos.node!=0);
	if(pos.node->first_child==0) {
		return end(pos);
		}
	return pos.node->first_child;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::end(const iterator_base& pos) const
	{
	sibling_iterator ret(0);
	ret.parent_=pos.node;
	return ret;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::begin_leaf() const
   {
   tree_node *tmp=head->next_sibling;
   if(tmp!=feet) {
      while(tmp->first_child)
         tmp=tmp->first_child;
      }
   return leaf_iterator(tmp);
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::end_leaf() const
   {
   return leaf_iterator(feet);
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::begin_leaf(const iterator_base& top) const
   {
	tree_node *tmp=top.node;
	while(tmp->first_child)
		 tmp=tmp->first_child;
   return leaf_iterator(tmp, top.node);
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::end_leaf(const iterator_base& top) const
   {
   return leaf_iterator(top.node, top.node);
   }

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::parent(iter position)
	{
	assert(position.node!=0);
	return iter(position.node->parent);
	}

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::previous_sibling(iter position)
	{
	assert(position.node!=0);
	iter ret(position);
	ret.node=position.node->prev_sibling;
	return ret;
	}

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::next_sibling(iter position)
	{
	assert(position.node!=0);
	iter ret(position);
	ret.node=position.node->next_sibling;
	return ret;
	}

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::next_at_same_depth(iter position) const
	{
	// We make use of a temporary fixed_depth iterator to implement this.

	typename tree<T, tree_node_allocator>::fixed_depth_iterator tmp(position.node);

	++tmp;
	return iter(tmp);

//	assert(position.node!=0);
//	iter ret(position);
//
//	if(position.node->next_sibling) {
//		ret.node=position.node->next_sibling;
//		}
//	else {
//		int relative_depth=0;
//	   upper:
//		do {
//			ret.node=ret.node->parent;
//			if(ret.node==0) return ret;
//			--relative_depth;
//			} while(ret.node->next_sibling==0);
//	   lower:
//		ret.node=ret.node->next_sibling;
//		while(ret.node->first_child==0) {
//			if(ret.node->next_sibling==0)
//				goto upper;
//			ret.node=ret.node->next_sibling;
//			if(ret.node==0) return ret;
//			}
//		while(relative_depth<0 && ret.node->first_child!=0) {
//			ret.node=ret.node->first_child;
//			++relative_depth;
//			}
//		if(relative_depth<0) {
//			if(ret.node->next_sibling==0) goto upper;
//			else                          goto lower;
//			}
//		}
//	return ret;
	}

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::append_child(iter position)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	tree_node *tmp=alloc_.allocate(1,0);
	alloc_.construct(tmp, tree_node_<T>());
//	kp::constructor(&tmp->data);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->parent=position.node;
	if(position.node->last_child!=0) {
		position.node->last_child->next_sibling=tmp;
		}
	else {
		position.node->first_child=tmp;
		}
	tmp->prev_sibling=position.node->last_child;
	position.node->last_child=tmp;
	tmp->next_sibling=0;
	return tmp;
	}

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::prepend_child(iter position)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	tree_node *tmp=alloc_.allocate(1,0);
	alloc_.construct(tmp, tree_node_<T>());
//	kp::constructor(&tmp->data);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->parent=position.node;
	if(position.node->first_child!=0) {
		position.node->first_child->prev_sibling=tmp;
		}
	else {
		position.node->last_child=tmp;
		}
	tmp->next_sibling=position.node->first_child;
	position.node->prev_child=tmp;
	tmp->prev_sibling=0;
	return tmp;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::append_child(iter position, const T& x)
	{
	// If your program fails here you probably used 'append_child' to add the top
	// node to an empty tree. From version 1.45 the top element should be added
	// using 'insert'. See the documentation for further information, and sorry about
	// the API change.
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	tree_node* tmp = alloc_.allocate(1,0);
	alloc_.construct(tmp, x);
//	kp::constructor(&tmp->data, x);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->parent=position.node;
	if(position.node->last_child!=0) {
		position.node->last_child->next_sibling=tmp;
		}
	else {
		position.node->first_child=tmp;
		}
	tmp->prev_sibling=position.node->last_child;
	position.node->last_child=tmp;
	tmp->next_sibling=0;
	return tmp;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::prepend_child(iter position, const T& x)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	tree_node* tmp = alloc_.allocate(1,0);
	alloc_.construct(tmp, x);
//	kp::constructor(&tmp->data, x);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->parent=position.node;
	if(position.node->first_child!=0) {
		position.node->first_child->prev_sibling=tmp;
		}
	else {
		position.node->last_child=tmp;
		}
	tmp->next_sibling=position.node->first_child;
	position.node->first_child=tmp;
	tmp->prev_sibling=0;
	return tmp;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::append_child(iter position, iter other)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	sibling_iterator aargh=append_child(position, value_type());
	return replace(aargh, other);
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::prepend_child(iter position, iter other)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	sibling_iterator aargh=prepend_child(position, value_type());
	return replace(aargh, other);
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::append_children(iter position, sibling_iterator from, sibling_iterator to)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	iter ret=from;

	while(from!=to) {
		insert_subtree(position.end(), from);
		++from;
		}
	return ret;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::prepend_children(iter position, sibling_iterator from, sibling_iterator to)
	{
	assert(position.node!=head);
	assert(position.node!=feet);
	assert(position.node);

	iter ret=from;

	while(from!=to) {
		insert_subtree(position.begin(), from);
		++from;
		}
	return ret;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::set_head(const T& x)
	{
	assert(head->next_sibling==feet);
	return insert(iterator(feet), x);
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert(iter position, const T& x)
	{
	if(position.node==0) {
		position.node=feet; // Backward compatibility: when calling insert on a null node,
		                    // insert before the feet.
		}
	tree_node* tmp = alloc_.allocate(1,0);
	alloc_.construct(tmp, x);
//	kp::constructor(&tmp->data, x);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->parent=position.node->parent;
	tmp->next_sibling=position.node;
	tmp->prev_sibling=position.node->prev_sibling;
	position.node->prev_sibling=tmp;

	if(tmp->prev_sibling==0) {
		if(tmp->parent) // when inserting nodes at the head, there is no parent
			tmp->parent->first_child=tmp;
		}
	else
		tmp->prev_sibling->next_sibling=tmp;
	return tmp;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::insert(sibling_iterator position, const T& x)
	{
	tree_node* tmp = alloc_.allocate(1,0);
	alloc_.construct(tmp, x);
//	kp::constructor(&tmp->data, x);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->next_sibling=position.node;
	if(position.node==0) { // iterator points to end of a subtree
		tmp->parent=position.parent_;
		tmp->prev_sibling=position.range_last();
		tmp->parent->last_child=tmp;
		}
	else {
		tmp->parent=position.node->parent;
		tmp->prev_sibling=position.node->prev_sibling;
		position.node->prev_sibling=tmp;
		}

	if(tmp->prev_sibling==0) {
		if(tmp->parent) // when inserting nodes at the head, there is no parent
			tmp->parent->first_child=tmp;
		}
	else
		tmp->prev_sibling->next_sibling=tmp;
	return tmp;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert_after(iter position, const T& x)
	{
	tree_node* tmp = alloc_.allocate(1,0);
	alloc_.construct(tmp, x);
//	kp::constructor(&tmp->data, x);
	tmp->first_child=0;
	tmp->last_child=0;

	tmp->parent=position.node->parent;
	tmp->prev_sibling=position.node;
	tmp->next_sibling=position.node->next_sibling;
	position.node->next_sibling=tmp;

	if(tmp->next_sibling==0) {
		if(tmp->parent) // when inserting nodes at the head, there is no parent
			tmp->parent->last_child=tmp;
		}
	else {
		tmp->next_sibling->prev_sibling=tmp;
		}
	return tmp;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert_subtree(iter position, const iterator_base& subtree)
	{
	// insert dummy
	iter it=insert(position, value_type());
	// replace dummy with subtree
	return replace(it, subtree);
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert_subtree_after(iter position, const iterator_base& subtree)
	{
	// insert dummy
	iter it=insert_after(position, value_type());
	// replace dummy with subtree
	return replace(it, subtree);
	}

// template <class T, class tree_node_allocator>
// template <class iter>
// iter tree<T, tree_node_allocator>::insert_subtree(sibling_iterator position, iter subtree)
// 	{
// 	// insert dummy
// 	iter it(insert(position, value_type()));
// 	// replace dummy with subtree
// 	return replace(it, subtree);
// 	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::replace(iter position, const T& x)
	{
//	kp::destructor(&position.node->data);
//	kp::constructor(&position.node->data, x);
	position.node->data=x;
//	alloc_.destroy(position.node);
//	alloc_.construct(position.node, x);
	return position;
	}

template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::replace(iter position, const iterator_base& from)
	{
	assert(position.node!=head);
	tree_node *current_from=from.node;
	tree_node *start_from=from.node;
	tree_node *current_to  =position.node;

	// replace the node at position with head of the replacement tree at from
//	std::cout << "warning!" << position.node << std::endl;
	erase_children(position);
//	std::cout << "no warning!" << std::endl;
	tree_node* tmp = alloc_.allocate(1,0);
	alloc_.construct(tmp, (*from));
//	kp::constructor(&tmp->data, (*from));
	tmp->first_child=0;
	tmp->last_child=0;
	if(current_to->prev_sibling==0) {
		if(current_to->parent!=0)
			current_to->parent->first_child=tmp;
		}
	else {
		current_to->prev_sibling->next_sibling=tmp;
		}
	tmp->prev_sibling=current_to->prev_sibling;
	if(current_to->next_sibling==0) {
		if(current_to->parent!=0)
			current_to->parent->last_child=tmp;
		}
	else {
		current_to->next_sibling->prev_sibling=tmp;
		}
	tmp->next_sibling=current_to->next_sibling;
	tmp->parent=current_to->parent;
//	kp::destructor(&current_to->data);
	alloc_.destroy(current_to);
	alloc_.deallocate(current_to,1);
	current_to=tmp;

	// only at this stage can we fix 'last'
	tree_node *last=from.node->next_sibling;

	pre_order_iterator toit=tmp;
	// copy all children
	do {
		assert(current_from!=0);
		if(current_from->first_child != 0) {
			current_from=current_from->first_child;
			toit=append_child(toit, current_from->data);
			}
		else {
			while(current_from->next_sibling==0 && current_from!=start_from) {
				current_from=current_from->parent;
				toit=parent(toit);
				assert(current_from!=0);
				}
			current_from=current_from->next_sibling;
			if(current_from!=last) {
				toit=append_child(parent(toit), current_from->data);
				}
			}
		} while(current_from!=last);

	return current_to;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::replace(
	sibling_iterator orig_begin,
	sibling_iterator orig_end,
	sibling_iterator new_begin,
	sibling_iterator new_end)
	{
	tree_node *orig_first=orig_begin.node;
	tree_node *new_first=new_begin.node;
	tree_node *orig_last=orig_first;
	while((++orig_begin)!=orig_end)
		orig_last=orig_last->next_sibling;
	tree_node *new_last=new_first;
	while((++new_begin)!=new_end)
		new_last=new_last->next_sibling;

	// insert all siblings in new_first..new_last before orig_first
	bool first=true;
	pre_order_iterator ret;
	while(1==1) {
		pre_order_iterator tt=insert_subtree(pre_order_iterator(orig_first), pre_order_iterator(new_first));
		if(first) {
			ret=tt;
			first=false;
			}
		if(new_first==new_last)
			break;
		new_first=new_first->next_sibling;
		}

	// erase old range of siblings
	bool last=false;
	tree_node *next=orig_first;
	while(1==1) {
		if(next==orig_last)
			last=true;
		next=next->next_sibling;
		erase((pre_order_iterator)orig_first);
		if(last)
			break;
		orig_first=next;
		}
	return ret;
	}

template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::flatten(iter position)
	{
	if(position.node->first_child==0)
		return position;

	tree_node *tmp=position.node->first_child;
	while(tmp) {
		tmp->parent=position.node->parent;
		tmp=tmp->next_sibling;
		}
	if(position.node->next_sibling) {
		position.node->last_child->next_sibling=position.node->next_sibling;
		position.node->next_sibling->prev_sibling=position.node->last_child;
		}
	else {
		position.node->parent->last_child=position.node->last_child;
		}
	position.node->next_sibling=position.node->first_child;
	position.node->next_sibling->prev_sibling=position.node;
	position.node->first_child=0;
	position.node->last_child=0;

	return position;
	}


template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::reparent(iter position, sibling_iterator begin, sibling_iterator end)
	{
	tree_node *first=begin.node;
	tree_node *last=first;

	assert(first!=position.node);

	if(begin==end) return begin;
	// determine last node
	while((++begin)!=end) {
		last=last->next_sibling;
		}
	// move subtree
	if(first->prev_sibling==0) {
		first->parent->first_child=last->next_sibling;
		}
	else {
		first->prev_sibling->next_sibling=last->next_sibling;
		}
	if(last->next_sibling==0) {
		last->parent->last_child=first->prev_sibling;
		}
	else {
		last->next_sibling->prev_sibling=first->prev_sibling;
		}
	if(position.node->first_child==0) {
		position.node->first_child=first;
		position.node->last_child=last;
		first->prev_sibling=0;
		}
	else {
		position.node->last_child->next_sibling=first;
		first->prev_sibling=position.node->last_child;
		position.node->last_child=last;
		}
	last->next_sibling=0;

	tree_node *pos=first;
   for(;;) {
		pos->parent=position.node;
		if(pos==last) break;
		pos=pos->next_sibling;
		}

	return first;
	}

template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::reparent(iter position, iter from)
	{
	if(from.node->first_child==0) return position;
	return reparent(position, from.node->first_child, end(from));
	}

template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::wrap(iter position, const T& x)
	{
	assert(position.node!=0);
	sibling_iterator fr=position, to=position;
	++to;
	iter ret = insert(position, x);
	reparent(ret, fr, to);
	return ret;
	}

template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::move_after(iter target, iter source)
   {
   tree_node *dst=target.node;
   tree_node *src=source.node;
   assert(dst);
   assert(src);

   if(dst==src) return source;
	if(dst->next_sibling)
		if(dst->next_sibling==src) // already in the right spot
			return source;

   // take src out of the tree
   if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
   else                     src->parent->first_child=src->next_sibling;
   if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
   else                     src->parent->last_child=src->prev_sibling;

   // connect it to the new point
   if(dst->next_sibling!=0) dst->next_sibling->prev_sibling=src;
   else                     dst->parent->last_child=src;
   src->next_sibling=dst->next_sibling;
   dst->next_sibling=src;
   src->prev_sibling=dst;
   src->parent=dst->parent;
   return src;
   }

template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::move_before(iter target, iter source)
   {
   tree_node *dst=target.node;
   tree_node *src=source.node;
   assert(dst);
   assert(src);

   if(dst==src) return source;
	if(dst->prev_sibling)
		if(dst->prev_sibling==src) // already in the right spot
			return source;

   // take src out of the tree
   if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
   else                     src->parent->first_child=src->next_sibling;
   if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
   else                     src->parent->last_child=src->prev_sibling;

   // connect it to the new point
   if(dst->prev_sibling!=0) dst->prev_sibling->next_sibling=src;
   else                     dst->parent->first_child=src;
   src->prev_sibling=dst->prev_sibling;
   dst->prev_sibling=src;
   src->next_sibling=dst;
   src->parent=dst->parent;
   return src;
   }

// specialisation for sibling_iterators
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::move_before(sibling_iterator target,
																													  sibling_iterator source)
	{
	tree_node *dst=target.node;
	tree_node *src=source.node;
	tree_node *dst_prev_sibling;
	if(dst==0) { // must then be an end iterator
		dst_prev_sibling=target.parent_->last_child;
		assert(dst_prev_sibling);
		}
	else dst_prev_sibling=dst->prev_sibling;
	assert(src);

	if(dst==src) return source;
	if(dst_prev_sibling)
		if(dst_prev_sibling==src) // already in the right spot
			return source;

	// take src out of the tree
	if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
	else                     src->parent->first_child=src->next_sibling;
	if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
	else                     src->parent->last_child=src->prev_sibling;

	// connect it to the new point
	if(dst_prev_sibling!=0) dst_prev_sibling->next_sibling=src;
	else                    target.parent_->first_child=src;
	src->prev_sibling=dst_prev_sibling;
	if(dst) {
		dst->prev_sibling=src;
		src->parent=dst->parent;
		}
	src->next_sibling=dst;
	return src;
	}

template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::move_ontop(iter target, iter source)
	{
	tree_node *dst=target.node;
	tree_node *src=source.node;
	assert(dst);
	assert(src);

	if(dst==src) return source;

//	if(dst==src->prev_sibling) {
//
//		}

	// remember connection points
	tree_node *b_prev_sibling=dst->prev_sibling;
	tree_node *b_next_sibling=dst->next_sibling;
	tree_node *b_parent=dst->parent;

	// remove target
	erase(target);

	// take src out of the tree
	if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
	else                     src->parent->first_child=src->next_sibling;
	if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
	else                     src->parent->last_child=src->prev_sibling;

	// connect it to the new point
	if(b_prev_sibling!=0) b_prev_sibling->next_sibling=src;
	else                  b_parent->first_child=src;
	if(b_next_sibling!=0) b_next_sibling->prev_sibling=src;
	else                  b_parent->last_child=src;
	src->prev_sibling=b_prev_sibling;
	src->next_sibling=b_next_sibling;
	src->parent=b_parent;
	return src;
	}


template <class T, class tree_node_allocator>
tree<T, tree_node_allocator> tree<T, tree_node_allocator>::move_out(iterator source)
	{
	tree ret;

	// Move source node into the 'ret' tree.
	ret.head->next_sibling = source.node;
	ret.feet->prev_sibling = source.node;
	source.node->parent=0;

	// Close the links in the current tree.
	if(source.node->prev_sibling!=0)
		source.node->prev_sibling->next_sibling = source.node->next_sibling;

	if(source.node->next_sibling!=0)
		source.node->next_sibling->prev_sibling = source.node->prev_sibling;

	// Fix source prev/next links.
	source.node->prev_sibling = ret.head;
	source.node->next_sibling = ret.feet;

	return ret; // A good compiler will move this, not copy.
	}

template <class T, class tree_node_allocator>
template<typename iter> iter tree<T, tree_node_allocator>::move_in(iter loc, tree& other)
	{
	if(other.head->next_sibling==other.feet) return loc; // other tree is empty

	tree_node *other_first_head = other.head->next_sibling;
	tree_node *other_last_head  = other.feet->prev_sibling;

	sibling_iterator prev(loc);
	--prev;

	prev.node->next_sibling = other_first_head;
	loc.node->prev_sibling  = other_last_head;
	other_first_head->prev_sibling = prev.node;
	other_last_head->next_sibling  = loc.node;

	// Adjust parent pointers.
	tree_node *walk=other_first_head;
	while(true) {
		walk->parent=loc.node->parent;
		if(walk==other_last_head)
			break;
		walk=walk->next_sibling;
		}

	// Close other tree.
	other.head->next_sibling=other.feet;
	other.feet->prev_sibling=other.head;

	return other_first_head;
	}

template <class T, class tree_node_allocator>
template<typename iter> iter tree<T, tree_node_allocator>::move_in_as_nth_child(iter loc, size_t n, tree& other)
	{
	if(other.head->next_sibling==other.feet) return loc; // other tree is empty

	tree_node *other_first_head = other.head->next_sibling;
	tree_node *other_last_head  = other.feet->prev_sibling;

	if(n==0) {
		if(loc.node->first_child==0) {
			loc.node->first_child=other_first_head;
			loc.node->last_child=other_last_head;
			other_last_head->next_sibling=0;
			other_first_head->prev_sibling=0;
			}
		else {
			loc.node->first_child->prev_sibling=other_last_head;
			other_last_head->next_sibling=loc.node->first_child;
			loc.node->first_child=other_first_head;
			other_first_head->prev_sibling=0;
			}
		}
	else {
		--n;
		tree_node *walk = loc.node->first_child;
		while(true) {
			if(walk==0)
				throw ::std::range_error("tree: move_in_as_nth_child position "
											  +::std::to_string(n+1)
											  +" out of range; only "
											  +::std::to_string(number_of_children(loc))
											  +" child nodes present");
			if(n==0)
				break;
			--n;
			walk = walk->next_sibling;
			}
		if(walk->next_sibling==0)
			loc.node->last_child=other_last_head;
		else
			walk->next_sibling->prev_sibling=other_last_head;
		other_last_head->next_sibling=walk->next_sibling;
		walk->next_sibling=other_first_head;
		other_first_head->prev_sibling=walk;
		}

	// Adjust parent pointers.
	tree_node *walk=other_first_head;
	while(true) {
		walk->parent=loc.node;
		if(walk==other_last_head)
			break;
		walk=walk->next_sibling;
		}

	// Close other tree.
	other.head->next_sibling=other.feet;
	other.feet->prev_sibling=other.head;

	return other_first_head;
	}


template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::merge(sibling_iterator to1,   sibling_iterator to2,
														sibling_iterator from1, sibling_iterator from2,
														bool duplicate_leaves)
	{
	sibling_iterator fnd;
	while(from1!=from2) {
		if((fnd=::std::find(to1, to2, (*from1))) != to2) { // element found
			if(from1.begin()==from1.end()) { // full depth reached
				if(duplicate_leaves)
					append_child(parent(to1), (*from1));
				}
			else { // descend further
				merge(fnd.begin(), fnd.end(), from1.begin(), from1.end(), duplicate_leaves);
				}
			}
		else { // element missing
			insert_subtree(to2, from1);
			}
		++from1;
		}
	}


template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to, bool deep)
	{
	::std::less<T> comp;
	sort(from, to, comp, deep);
	}

template <class T, class tree_node_allocator>
template <class StrictWeakOrdering>
void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to,
													 StrictWeakOrdering comp, bool deep)
	{
	if(from==to) return;
	// make list of sorted nodes
	// CHECK: if multiset stores equivalent nodes in the order in which they
	// are inserted, then this routine should be called 'stable_sort'.
	::std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> > nodes(comp);
	sibling_iterator it=from, it2=to;
	while(it != to) {
		nodes.insert(it.node);
		++it;
		}
	// reassemble
	--it2;

	// prev and next are the nodes before and after the sorted range
	tree_node *prev=from.node->prev_sibling;
	tree_node *next=it2.node->next_sibling;
	typename ::std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> >::iterator nit=nodes.begin(), eit=nodes.end();
	if(prev==0) {
		if((*nit)->parent!=0) // to catch "sorting the head" situations, when there is no parent
			(*nit)->parent->first_child=(*nit);
		}
	else prev->next_sibling=(*nit);

	--eit;
	while(nit!=eit) {
		(*nit)->prev_sibling=prev;
		if(prev)
			prev->next_sibling=(*nit);
		prev=(*nit);
		++nit;
		}
	// prev now points to the last-but-one node in the sorted range
	if(prev)
		prev->next_sibling=(*eit);

	// eit points to the last node in the sorted range.
	(*eit)->next_sibling=next;
   (*eit)->prev_sibling=prev; // missed in the loop above
	if(next==0) {
		if((*eit)->parent!=0) // to catch "sorting the head" situations, when there is no parent
			(*eit)->parent->last_child=(*eit);
		}
	else next->prev_sibling=(*eit);

	if(deep) {	// sort the children of each node too
		sibling_iterator bcs(*nodes.begin());
		sibling_iterator ecs(*eit);
		++ecs;
		while(bcs!=ecs) {
			sort(begin(bcs), end(bcs), comp, deep);
			++bcs;
			}
		}
	}

template <class T, class tree_node_allocator>
template <typename iter>
bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_) const
	{
	::std::equal_to<T> comp;
	return equal(one_, two, three_, comp);
	}

template <class T, class tree_node_allocator>
template <typename iter>
bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_) const
	{
	::std::equal_to<T> comp;
	return equal_subtree(one_, two_, comp);
	}

template <class T, class tree_node_allocator>
template <typename iter, class BinaryPredicate>
bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_, BinaryPredicate fun) const
	{
	pre_order_iterator one(one_), three(three_);

//	if(one==two && is_valid(three) && three.number_of_children()!=0)
//		return false;
	while(one!=two && is_valid(three)) {
		if(!fun(*one,*three))
			return false;
		if(one.number_of_children()!=three.number_of_children())
			return false;
		++one;
		++three;
		}
	return true;
	}

template <class T, class tree_node_allocator>
template <typename iter, class BinaryPredicate>
bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_, BinaryPredicate fun) const
	{
	pre_order_iterator one(one_), two(two_);

	if(!fun(*one,*two)) return false;
	if(number_of_children(one)!=number_of_children(two)) return false;
	return equal(begin(one),end(one),begin(two),fun);
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator> tree<T, tree_node_allocator>::subtree(sibling_iterator from, sibling_iterator to) const
	{
	assert(from!=to); // if from==to, the range is empty, hence no tree to return.

	tree tmp;
	tmp.set_head(value_type());
	tmp.replace(tmp.begin(), tmp.end(), from, to);
	return tmp;
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::subtree(tree& tmp, sibling_iterator from, sibling_iterator to) const
	{
	assert(from!=to); // if from==to, the range is empty, hence no tree to return.

	tmp.set_head(value_type());
	tmp.replace(tmp.begin(), tmp.end(), from, to);
	}

template <class T, class tree_node_allocator>
size_t tree<T, tree_node_allocator>::size() const
	{
	size_t i=0;
	pre_order_iterator it=begin(), eit=end();
	while(it!=eit) {
		++i;
		++it;
		}
	return i;
	}

template <class T, class tree_node_allocator>
size_t tree<T, tree_node_allocator>::size(const iterator_base& top) const
	{
	size_t i=0;
	pre_order_iterator it=top, eit=top;
	eit.skip_children();
	++eit;
	while(it!=eit) {
		++i;
		++it;
		}
	return i;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::empty() const
	{
	pre_order_iterator it=begin(), eit=end();
	return (it==eit);
	}

template <class T, class tree_node_allocator>
int tree<T, tree_node_allocator>::depth(const iterator_base& it)
	{
	tree_node* pos=it.node;
	assert(pos!=0);
	int ret=0;
	while(pos->parent!=0) {
		pos=pos->parent;
		++ret;
		}
	return ret;
	}

template <class T, class tree_node_allocator>
int tree<T, tree_node_allocator>::depth(const iterator_base& it, const iterator_base& root)
	{
	tree_node* pos=it.node;
	assert(pos!=0);
	int ret=0;
	while(pos->parent!=0 && pos!=root.node) {
		pos=pos->parent;
		++ret;
		}
	return ret;
	}

template <class T, class tree_node_allocator>
int tree<T, tree_node_allocator>::max_depth() const
	{
	int maxd=-1;
	for(tree_node *it = head->next_sibling; it!=feet; it=it->next_sibling)
		maxd=::std::max(maxd, max_depth(it));

	return maxd;
	}


template <class T, class tree_node_allocator>
int tree<T, tree_node_allocator>::max_depth(const iterator_base& pos) const
	{
	tree_node *tmp=pos.node;

	if(tmp==0 || tmp==head || tmp==feet) return -1;

	int curdepth=0, maxdepth=0;
	while(true) { // try to walk the bottom of the tree
		while(tmp->first_child==0) {
			if(tmp==pos.node) return maxdepth;
			if(tmp->next_sibling==0) {
				// try to walk up and then right again
				do {
					tmp=tmp->parent;
               if(tmp==0) return maxdepth;
               --curdepth;
				   } while(tmp->next_sibling==0);
				}
         if(tmp==pos.node) return maxdepth;
			tmp=tmp->next_sibling;
			}
		tmp=tmp->first_child;
		++curdepth;
		maxdepth=::std::max(curdepth, maxdepth);
		}
	}

template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::number_of_children(const iterator_base& it)
	{
	tree_node *pos=it.node->first_child;
	if(pos==0) return 0;

	unsigned int ret=1;
//	  while(pos!=it.node->last_child) {
//		  ++ret;
//		  pos=pos->next_sibling;
//		  }
	while((pos=pos->next_sibling))
		++ret;
	return ret;
	}

template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::number_of_siblings(const iterator_base& it) const
	{
	tree_node *pos=it.node;
	unsigned int ret=0;
	// count forward
	while(pos->next_sibling &&
			pos->next_sibling!=head &&
			pos->next_sibling!=feet) {
		++ret;
		pos=pos->next_sibling;
		}
	// count backward
	pos=it.node;
	while(pos->prev_sibling &&
			pos->prev_sibling!=head &&
			pos->prev_sibling!=feet) {
		++ret;
		pos=pos->prev_sibling;
		}

	return ret;
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::swap(sibling_iterator it)
	{
	tree_node *nxt=it.node->next_sibling;
	if(nxt) {
		if(it.node->prev_sibling)
			it.node->prev_sibling->next_sibling=nxt;
		else
			it.node->parent->first_child=nxt;
		nxt->prev_sibling=it.node->prev_sibling;
		tree_node *nxtnxt=nxt->next_sibling;
		if(nxtnxt)
			nxtnxt->prev_sibling=it.node;
		else
			it.node->parent->last_child=it.node;
		nxt->next_sibling=it.node;
		it.node->prev_sibling=nxt;
		it.node->next_sibling=nxtnxt;
		}
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::swap(iterator one, iterator two)
	{
	// if one and two are adjacent siblings, use the sibling swap
	if(one.node->next_sibling==two.node) swap(one);
	else if(two.node->next_sibling==one.node) swap(two);
	else {
		tree_node *nxt1=one.node->next_sibling;
		tree_node *nxt2=two.node->next_sibling;
		tree_node *pre1=one.node->prev_sibling;
		tree_node *pre2=two.node->prev_sibling;
		tree_node *par1=one.node->parent;
		tree_node *par2=two.node->parent;

		// reconnect
		one.node->parent=par2;
		one.node->next_sibling=nxt2;
		if(nxt2) nxt2->prev_sibling=one.node;
		else     par2->last_child=one.node;
		one.node->prev_sibling=pre2;
		if(pre2) pre2->next_sibling=one.node;
		else     par2->first_child=one.node;

		two.node->parent=par1;
		two.node->next_sibling=nxt1;
		if(nxt1) nxt1->prev_sibling=two.node;
		else     par1->last_child=two.node;
		two.node->prev_sibling=pre1;
		if(pre1) pre1->next_sibling=two.node;
		else     par1->first_child=two.node;
		}
	}

// template <class BinaryPredicate>
// tree<T, tree_node_allocator>::iterator tree<T, tree_node_allocator>::find_subtree(
// 	sibling_iterator subfrom, sibling_iterator subto, iterator from, iterator to,
// 	BinaryPredicate fun) const
// 	{
// 	assert(1==0); // this routine is not finished yet.
// 	while(from!=to) {
// 		if(fun(*subfrom, *from)) {
//
// 			}
// 		}
// 	return to;
// 	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::is_in_subtree(const iterator_base& it, const iterator_base& begin,
																 const iterator_base& end) const
	{
	// FIXME: this should be optimised.
	pre_order_iterator tmp=begin;
	while(tmp!=end) {
		if(tmp==it) return true;
		++tmp;
		}
	return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::is_valid(const iterator_base& it) const
	{
	if(it.node==0 || it.node==feet || it.node==head) return false;
	else return true;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::iterator tree<T, tree_node_allocator>::lowest_common_ancestor(
	const iterator_base& one, const iterator_base& two) const
	{
	::std::set<iterator, iterator_base_less> parents;

	// Walk up from 'one' storing all parents.
	iterator walk=one;
	do {
		walk=parent(walk);
		parents.insert(walk);
		} while( is_valid(parent(walk)) );

	// Walk up from 'two' until we encounter a node in parents.
	walk=two;
	do {
		walk=parent(walk);
		if(parents.find(walk) != parents.end()) break;
		} while( is_valid(parent(walk)) );

	return walk;
	}

template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::index(sibling_iterator it) const
	{
	unsigned int ind=0;
	if(it.node->parent==0) {
		while(it.node->prev_sibling!=head) {
			it.node=it.node->prev_sibling;
			++ind;
			}
		}
	else {
		while(it.node->prev_sibling!=0) {
			it.node=it.node->prev_sibling;
			++ind;
			}
		}
	return ind;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling(const iterator_base& it, unsigned int num)
   {
   tree_node *tmp;
   if(it.node->parent==0) {
      tmp=head->next_sibling;
      while(num) {
         tmp = tmp->next_sibling;
         --num;
         }
      }
   else {
      tmp=it.node->parent->first_child;
      while(num) {
         assert(tmp!=0);
         tmp = tmp->next_sibling;
         --num;
         }
      }
   return tmp;
   }

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::debug_verify_consistency() const
	{
	iterator it=begin();
	while(it!=end()) {
		if(it.node->parent!=0) {
			if(it.node->prev_sibling==0)
				assert(it.node->parent->first_child==it.node);
			else
				assert(it.node->prev_sibling->next_sibling==it.node);
			if(it.node->next_sibling==0)
				assert(it.node->parent->last_child==it.node);
			else
				assert(it.node->next_sibling->prev_sibling==it.node);
			}
		++it;
		}
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::child(const iterator_base& it, unsigned int num)
	{
	tree_node *tmp=it.node->first_child;
	while(num--) {
		assert(tmp!=0);
		tmp=tmp->next_sibling;
		}
	return tmp;
	}




// Iterator base

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::iterator_base::iterator_base()
	: node(0), skip_current_children_(false)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::iterator_base::iterator_base(tree_node *tn)
	: node(tn), skip_current_children_(false)
	{
	}

template <class T, class tree_node_allocator>
T& tree<T, tree_node_allocator>::iterator_base::operator*() const
	{
	return node->data;
	}

template <class T, class tree_node_allocator>
T* tree<T, tree_node_allocator>::iterator_base::operator->() const
	{
	return &(node->data);
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::post_order_iterator::operator!=(const post_order_iterator& other) const
	{
	if(other.node!=this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::post_order_iterator::operator==(const post_order_iterator& other) const
	{
	if(other.node==this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::pre_order_iterator::operator!=(const pre_order_iterator& other) const
	{
	if(other.node!=this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::pre_order_iterator::operator==(const pre_order_iterator& other) const
	{
	if(other.node==this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::sibling_iterator::operator!=(const sibling_iterator& other) const
	{
	if(other.node!=this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::sibling_iterator::operator==(const sibling_iterator& other) const
	{
	if(other.node==this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::leaf_iterator::operator!=(const leaf_iterator& other) const
   {
   if(other.node!=this->node) return true;
   else return false;
   }

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::leaf_iterator::operator==(const leaf_iterator& other) const
   {
   if(other.node==this->node && other.top_node==this->top_node) return true;
   else return false;
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::iterator_base::begin() const
	{
	if(node->first_child==0)
		return end();

	sibling_iterator ret(node->first_child);
	ret.parent_=this->node;
	return ret;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::iterator_base::end() const
	{
	sibling_iterator ret(0);
	ret.parent_=node;
	return ret;
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::iterator_base::skip_children()
	{
	skip_current_children_=true;
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::iterator_base::skip_children(bool skip)
   {
   skip_current_children_=skip;
   }

template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::iterator_base::number_of_children() const
	{
	tree_node *pos=node->first_child;
	if(pos==0) return 0;

	unsigned int ret=1;
	while(pos!=node->last_child) {
		++ret;
		pos=pos->next_sibling;
		}
	return ret;
	}



// Pre-order iterator

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator()
	: iterator_base(0)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(tree_node *tn)
	: iterator_base(tn)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(const iterator_base &other)
	: iterator_base(other.node)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(const sibling_iterator& other)
	: iterator_base(other.node)
	{
	if(this->node==0) {
		if(other.range_last()!=0)
			this->node=other.range_last();
		else
			this->node=other.parent_;
		this->skip_children();
		++(*this);
		}
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator++()
	{
	assert(this->node!=0);
	if(!this->skip_current_children_ && this->node->first_child != 0) {
		this->node=this->node->first_child;
		}
	else {
		this->skip_current_children_=false;
		while(this->node->next_sibling==0) {
			this->node=this->node->parent;
			if(this->node==0)
				return *this;
			}
		this->node=this->node->next_sibling;
		}
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator--()
	{
	assert(this->node!=0);
	if(this->node->prev_sibling) {
		this->node=this->node->prev_sibling;
		while(this->node->last_child)
			this->node=this->node->last_child;
		}
	else {
		this->node=this->node->parent;
		if(this->node==0)
			return *this;
		}
	return *this;
}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::pre_order_iterator::operator++(int)
	{
	pre_order_iterator copy = *this;
	++(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::next_skip_children()
   {
	(*this).skip_children();
	(*this)++;
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::pre_order_iterator::operator--(int)
{
  pre_order_iterator copy = *this;
  --(*this);
  return copy;
}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator+=(unsigned int num)
	{
	while(num>0) {
		++(*this);
		--num;
		}
	return (*this);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator-=(unsigned int num)
	{
	while(num>0) {
		--(*this);
		--num;
		}
	return (*this);
	}



// Post-order iterator

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator()
	: iterator_base(0)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(tree_node *tn)
	: iterator_base(tn)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(const iterator_base &other)
	: iterator_base(other.node)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(const sibling_iterator& other)
	: iterator_base(other.node)
	{
	if(this->node==0) {
		if(other.range_last()!=0)
			this->node=other.range_last();
		else
			this->node=other.parent_;
		this->skip_children();
		++(*this);
		}
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator++()
	{
	assert(this->node!=0);
	if(this->node->next_sibling==0) {
		this->node=this->node->parent;
		this->skip_current_children_=false;
		}
	else {
		this->node=this->node->next_sibling;
		if(this->skip_current_children_) {
			this->skip_current_children_=false;
			}
		else {
			while(this->node->first_child)
				this->node=this->node->first_child;
			}
		}
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator--()
	{
	assert(this->node!=0);
	if(this->skip_current_children_ || this->node->last_child==0) {
		this->skip_current_children_=false;
		while(this->node->prev_sibling==0)
			this->node=this->node->parent;
		this->node=this->node->prev_sibling;
		}
	else {
		this->node=this->node->last_child;
		}
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::post_order_iterator::operator++(int)
	{
	post_order_iterator copy = *this;
	++(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::post_order_iterator::operator--(int)
	{
	post_order_iterator copy = *this;
	--(*this);
	return copy;
	}


template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator+=(unsigned int num)
	{
	while(num>0) {
		++(*this);
		--num;
		}
	return (*this);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator-=(unsigned int num)
	{
	while(num>0) {
		--(*this);
		--num;
		}
	return (*this);
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::post_order_iterator::descend_all()
	{
	assert(this->node!=0);
	while(this->node->first_child)
		this->node=this->node->first_child;
	}


// Breadth-first iterator

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::breadth_first_queued_iterator::breadth_first_queued_iterator()
	: iterator_base()
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::breadth_first_queued_iterator::breadth_first_queued_iterator(tree_node *tn)
	: iterator_base(tn)
	{
	traversal_queue.push(tn);
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::breadth_first_queued_iterator::breadth_first_queued_iterator(const iterator_base& other)
	: iterator_base(other.node)
	{
	traversal_queue.push(other.node);
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator!=(const breadth_first_queued_iterator& other) const
	{
	if(other.node!=this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator==(const breadth_first_queued_iterator& other) const
	{
	if(other.node==this->node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::breadth_first_queued_iterator& tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator++()
	{
	assert(this->node!=0);

	// Add child nodes and pop current node
	sibling_iterator sib=this->begin();
	while(sib!=this->end()) {
		traversal_queue.push(sib.node);
		++sib;
		}
	traversal_queue.pop();
	if(traversal_queue.size()>0)
		this->node=traversal_queue.front();
	else
		this->node=0;
	return (*this);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::breadth_first_queued_iterator tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator++(int)
	{
	breadth_first_queued_iterator copy = *this;
	++(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::breadth_first_queued_iterator& tree<T, tree_node_allocator>::breadth_first_queued_iterator::operator+=(unsigned int num)
	{
	while(num>0) {
		++(*this);
		--num;
		}
	return (*this);
	}



// Fixed depth iterator

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator()
	: iterator_base()
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(tree_node *tn)
	: iterator_base(tn), top_node(0)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const iterator_base& other)
	: iterator_base(other.node), top_node(0)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const sibling_iterator& other)
	: iterator_base(other.node), top_node(0)
	{
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const fixed_depth_iterator& other)
	: iterator_base(other.node), top_node(other.top_node)
	{
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::fixed_depth_iterator::operator==(const fixed_depth_iterator& other) const
	{
	if(other.node==this->node && other.top_node==top_node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::fixed_depth_iterator::operator!=(const fixed_depth_iterator& other) const
	{
	if(other.node!=this->node || other.top_node!=top_node) return true;
	else return false;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator++()
	{
	assert(this->node!=0);

	if(this->node->next_sibling) {
		this->node=this->node->next_sibling;
		}
	else {
		int relative_depth=0;
	   upper:
		do {
			if(this->node==this->top_node) {
				this->node=0; // FIXME: return a proper fixed_depth end iterator once implemented
				return *this;
				}
			this->node=this->node->parent;
			if(this->node==0) return *this;
			--relative_depth;
			} while(this->node->next_sibling==0);
	   lower:
		this->node=this->node->next_sibling;
		while(this->node->first_child==0) {
			if(this->node->next_sibling==0)
				goto upper;
			this->node=this->node->next_sibling;
			if(this->node==0) return *this;
			}
		while(relative_depth<0 && this->node->first_child!=0) {
			this->node=this->node->first_child;
			++relative_depth;
			}
		if(relative_depth<0) {
			if(this->node->next_sibling==0) goto upper;
			else                          goto lower;
			}
		}
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator--()
	{
	assert(this->node!=0);

	if(this->node->prev_sibling) {
		this->node=this->node->prev_sibling;
		}
	else {
		int relative_depth=0;
	   upper:
		do {
			if(this->node==this->top_node) {
				this->node=0;
				return *this;
				}
			this->node=this->node->parent;
			if(this->node==0) return *this;
			--relative_depth;
			} while(this->node->prev_sibling==0);
	   lower:
		this->node=this->node->prev_sibling;
		while(this->node->last_child==0) {
			if(this->node->prev_sibling==0)
				goto upper;
			this->node=this->node->prev_sibling;
			if(this->node==0) return *this;
			}
		while(relative_depth<0 && this->node->last_child!=0) {
			this->node=this->node->last_child;
			++relative_depth;
			}
		if(relative_depth<0) {
			if(this->node->prev_sibling==0) goto upper;
			else                            goto lower;
			}
		}
	return *this;

//
//
//	assert(this->node!=0);
//	if(this->node->prev_sibling!=0) {
//		this->node=this->node->prev_sibling;
//		assert(this->node!=0);
//		if(this->node->parent==0 && this->node->prev_sibling==0) // head element
//			this->node=0;
//		}
//	else {
//		tree_node *par=this->node->parent;
//		do {
//			par=par->prev_sibling;
//			if(par==0) { // FIXME: need to keep track of this!
//				this->node=0;
//				return *this;
//				}
//			} while(par->last_child==0);
//		this->node=par->last_child;
//		}
//	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::fixed_depth_iterator::operator++(int)
	{
	fixed_depth_iterator copy = *this;
	++(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::fixed_depth_iterator::operator--(int)
   {
	fixed_depth_iterator copy = *this;
	--(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator-=(unsigned int num)
	{
	while(num>0) {
		--(*this);
		--(num);
		}
	return (*this);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator+=(unsigned int num)
	{
	while(num>0) {
		++(*this);
		--(num);
		}
	return *this;
	}


// Sibling iterator

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator()
	: iterator_base()
	{
	set_parent_();
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(tree_node *tn)
	: iterator_base(tn)
	{
	set_parent_();
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(const iterator_base& other)
	: iterator_base(other.node)
	{
	set_parent_();
	}

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(const sibling_iterator& other)
	: iterator_base(other), parent_(other.parent_)
	{
	}

template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::sibling_iterator::set_parent_()
	{
	parent_=0;
	if(this->node==0) return;
	if(this->node->parent!=0)
		parent_=this->node->parent;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator++()
	{
	if(this->node)
		this->node=this->node->next_sibling;
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator--()
	{
	if(this->node) this->node=this->node->prev_sibling;
	else {
		assert(parent_);
		this->node=parent_->last_child;
		}
	return *this;
}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling_iterator::operator++(int)
	{
	sibling_iterator copy = *this;
	++(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling_iterator::operator--(int)
	{
	sibling_iterator copy = *this;
	--(*this);
	return copy;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator+=(unsigned int num)
	{
	while(num>0) {
		++(*this);
		--num;
		}
	return (*this);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator-=(unsigned int num)
	{
	while(num>0) {
		--(*this);
		--num;
		}
	return (*this);
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::tree_node *tree<T, tree_node_allocator>::sibling_iterator::range_first() const
	{
	tree_node *tmp=parent_->first_child;
	return tmp;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::tree_node *tree<T, tree_node_allocator>::sibling_iterator::range_last() const
	{
	return parent_->last_child;
	}

// Leaf iterator

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator()
   : iterator_base(0), top_node(0)
   {
   }

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator(tree_node *tn, tree_node *top)
   : iterator_base(tn), top_node(top)
   {
   }

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator(const iterator_base &other)
   : iterator_base(other.node), top_node(0)
   {
   }

template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::leaf_iterator::leaf_iterator(const sibling_iterator& other)
   : iterator_base(other.node), top_node(0)
   {
   if(this->node==0) {
      if(other.range_last()!=0)
         this->node=other.range_last();
      else
         this->node=other.parent_;
      ++(*this);
      }
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator++()
   {
	assert(this->node!=0);
	if(this->node->first_child!=0) { // current node is no longer leaf (children got added)
		 while(this->node->first_child)
			  this->node=this->node->first_child;
		 }
	else {
		 while(this->node->next_sibling==0) {
			  if (this->node->parent==0) return *this;
			  this->node=this->node->parent;
			  if (top_node != 0 && this->node==top_node) return *this;
			  }
		 this->node=this->node->next_sibling;
		 while(this->node->first_child)
			  this->node=this->node->first_child;
		 }
	return *this;
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator--()
   {
	assert(this->node!=0);
	while (this->node->prev_sibling==0) {
		if (this->node->parent==0) return *this;
		this->node=this->node->parent;
		if (top_node !=0 && this->node==top_node) return *this;
		}
	this->node=this->node->prev_sibling;
	while(this->node->last_child)
		this->node=this->node->last_child;
	return *this;
	}

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::leaf_iterator::operator++(int)
   {
   leaf_iterator copy = *this;
   ++(*this);
   return copy;
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator tree<T, tree_node_allocator>::leaf_iterator::operator--(int)
   {
   leaf_iterator copy = *this;
   --(*this);
   return copy;
   }


template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator+=(unsigned int num)
   {
   while(num>0) {
      ++(*this);
      --num;
      }
   return (*this);
   }

template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::leaf_iterator& tree<T, tree_node_allocator>::leaf_iterator::operator-=(unsigned int num)
   {
   while(num>0) {
      --(*this);
      --num;
      }
   return (*this);
   }

}

#endif

// Local variables:
// default-tab-width: 3
// End:
Hints

Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://code.reversed.top/user/xaizek/gcc-plugins

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@code.reversed.top/user/xaizek/gcc-plugins

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a pull request:
... clone the repository ...
... make some changes and some commits ...
git push origin master